

Automotive single line ESD protection for high speed lines in 0402

SOD882T(0402) (QFN-2L 1.0 x 0.6 x 0.35)

Product status link

ESDAXLC6-1BT2Y

Features

- Flow-through routing to keep signal integrity
- Ultra large bandwidth: 12 GHz
- Ultra low capacitance: 0.4 pF
- Extended operating junction temperature range: -55 °C to 150 °C
- · RoHS compliant
- Complies with ISO 10605 C = 150 pF, R = 330 Ω
 - ±16 kV (contact discharge)
 - ±30 kV (air discharge)
- Complies with ISO 10605 C = 330 pF, R = 330 Ω
 - ±12 kV (contact discharge)
 - ±30 kV (air discharge)
- Complies with ISO 7637-3:
 - pulse 3a: $V_s = -150 \text{ V}$
 - pulse 3b: $V_s = +150 \text{ V}$
 - pulse 2a: $V_s = \pm 85 \text{ V}$

Application

The ESDAXLC6-1BT2Y is designed to protect against electrostatic discharge on automotive circuits such as:

- APIX
- LVDS & digital video interface
- · Ethernet and BroadrReach
- USB 2.0 and USB 3.0
- High speed communication buses
- RF front-end

Description

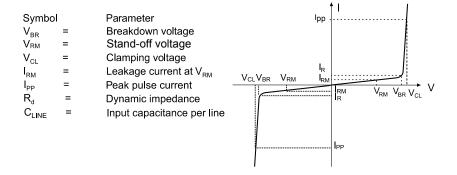
The ESDAXLC6-1BT2Y is an ESD device designed for high-speed lines protection.

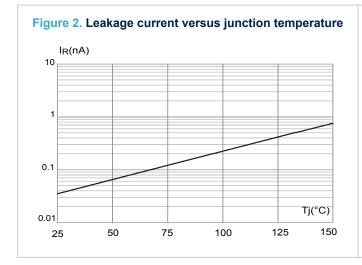
1 Characteristics

Table 1. Absolute maximum ratings (T_{amb} = 25 °C)

Symbol		Value	Unit		
		ISO10605 / IEC 61000-4-2 (C = 150 pF, R = 330 Ω):			
		Contact discharge	16		
V _{PP}	Dook nulso voltago	Air discharge	30	kV	
у РР	Peak pulse voltage	ISO10605 (C = 330 pF, R = 330 Ω)		KV	
		Contact discharge	12		
		Air discharge	30		
P _{PP}	Peak pulse power dissipation (8/20 µs)		40	W	
I _{PP}	Peak Pulse current (8/20 μs)		1.3	Α	
T _{stg}	Storage temperature range		-65 to +150	°C	
Tj	Operating junction temperature range		-55 to +150	°C	
TL	Maximum lead temperatur	260	°C		

Figure 1. Electrical characteristics (definitions)




Table 2. Electrical characteristics (values) (T_{amb} = 25° C)

Symbol	Test conditions	Min.	Тур.	Max.	Unit
V _{BR}	I _R = 1 mA		9	11	V
I _R	V _R = 3 V			50	nA
	I _{PP} = 1 A, 8/20 μs			17	
V _{CL}	SO 10605- C = 150 pF, R = 330 Ω -8 kV contact discharge, measured at 30 ns		37		V
	TLP, pulse duration 100 ns, 16 A		41		
R _d	TLP, pulse duration 100 ns, 16 A		2		Ω
C _{I/O-GND}	$V_{I/O} = 0 \text{ V}, 200 \text{ MHz} < f < 3 \text{ GHz}, V_{OSC} = 30 \text{ mV}$		0.4	0.5	pF
f _C	$S_{21} = -3 \text{ dB}$		12		GHz

DS10560 - Rev 2 page 2/13

1.1 Characteristics (curves)

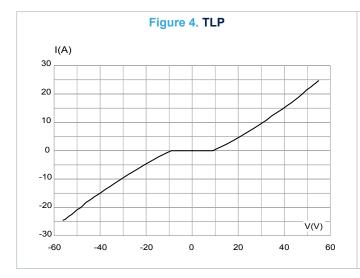
C(pF)

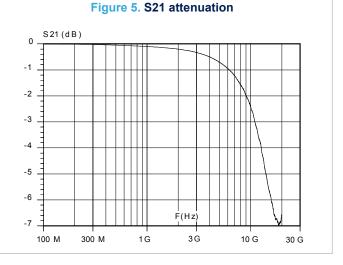
0.8

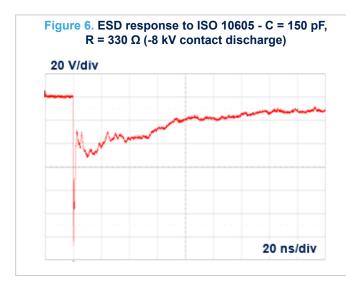
0.7

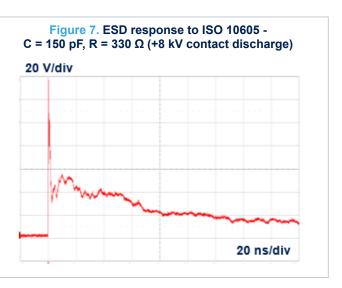
0.6

0.5


0.4


0.3


0.2


0.1

0 1 2 3 4 5

DS10560 - Rev 2 page 3/13

Figure 8. ESD response to ISO 7637-3 pulse 3a: -150 V

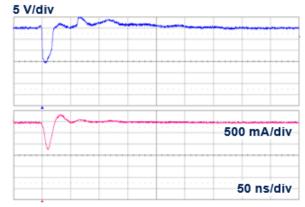


Figure 9. ESD response to ISO 7637-3 pulse 3b: +150 V

Figure 10. ESD response to ISO 7637-3 pulse 2a: -85 V

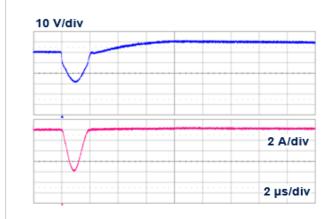


Figure 11. ESD response to ISO 7637-3 pulse 2a: +85 V

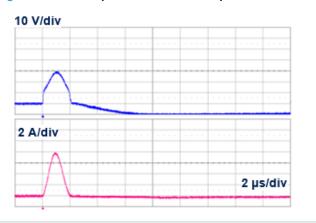


Figure 12. H2 harmonic versus input power at 710 MHz

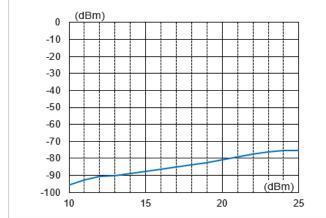
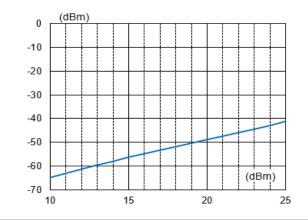



Figure 13. H3 harmonic versus input power at 710 MHz

DS10560 - Rev 2 page 4/13

Figure 14. H2 harmonic versus input power at 824 MHz

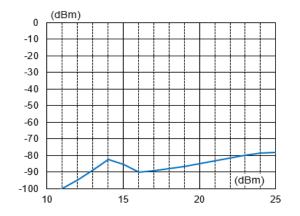


Figure 15. H3 harmonic versus input power at 824 MHz

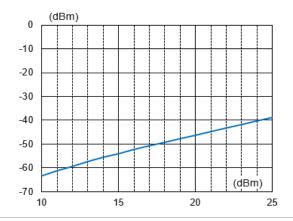


Figure 16. H2 harmonic versus input power at 2400 MHz

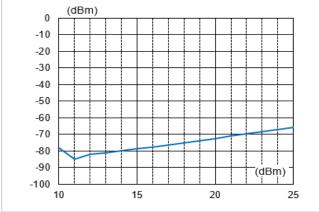
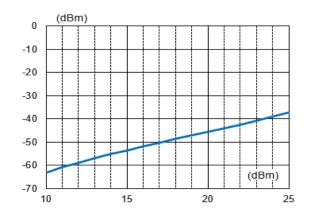



Figure 17. H3 harmonic versus input power at 2400 MHz

DS10560 - Rev 2 page 5/13

2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

2.1 Package information

A1 L2

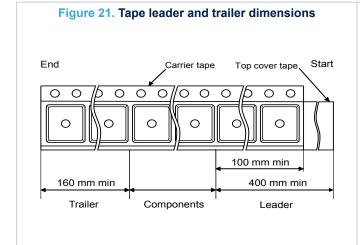
Figure 18. Package outline

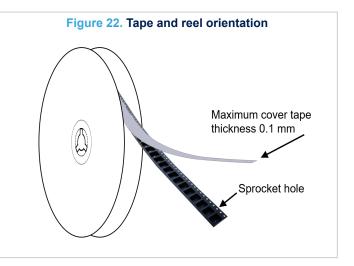
Table 3. Package mechanical data

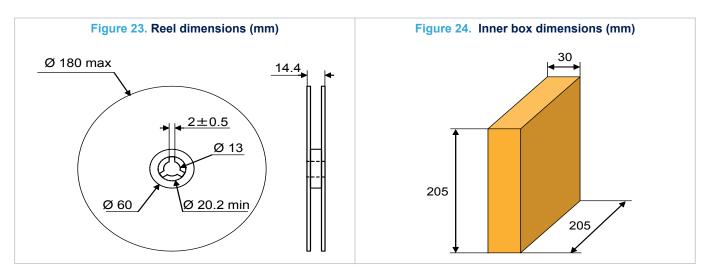
	Dimensions					
Ref.	Millimeters					
	Min.	Тур.	Max.			
A	0.30		0.40			
A1	0.00		0.05			
L1	0.45	0.50	0.55			
L2	0.45	0.50	0.55			
D	0.95	1.00	1.05			
E	0.55	0.60	0.65			
е	0.60	0.65	0.70			
b1	0.20	0.25	0.30			
b2	0.20	0.25	0.30			

DS10560 - Rev 2 page 6/13

2.2 Packing and marking information

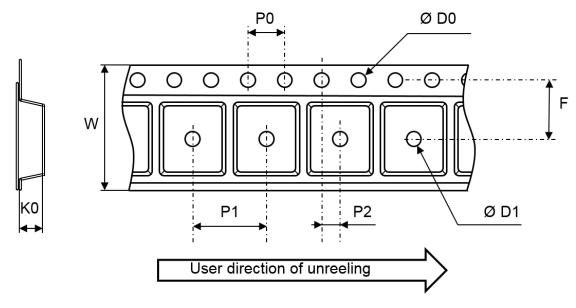

Figure 19. Marking layout


Pin1


Pin2

Taped according to EIA-481

Note: Pocket dimensions are not on scale Pocket shape may vary depending on package On bidirectional devices, marking and logo may be not always in the same direction



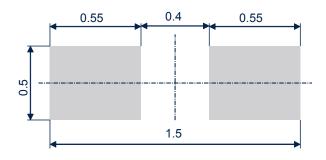
DS10560 - Rev 2 page 7/13

Figure 25. Tape outline

Note: Pocket dimensions are not on scale Pocket shape may vary depending on package

Table 4. Tape and reel mechanical data

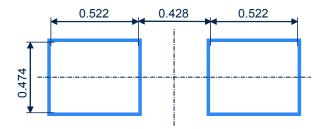
	Dimensions					
Ref.	Millimeters					
	Min.	Тур.	Max.			
D0	1.45	1.5	1.6			
D1	0.35					
F	3.45	3.5	3.55			
K0	0.42	0.47	0.52			
P0	3.9	4	4.1			
P1	1.95	2	2.05			
P2	1.95	2	2.05			
W	7.9	8	8.3			


DS10560 - Rev 2 page 8/13

3 Assembly recommendations

3.1 Recommended footprint

Figure 26. Recommended footprint in mm



Note: Solder mask defined (SMD) recommended.

3.2 Stencil opening design

Stencil opening thickness: 75 µm / 3 mils

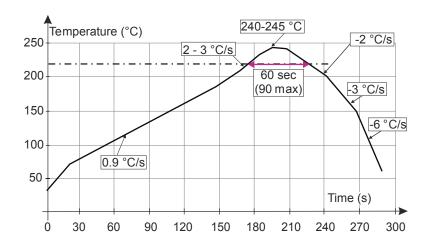
Figure 27. Stencil opening recommendations

3.3 Solder paste

- 1. Halide-free flux, qualification ROL0 according to ANSI/J-STD-004.
- 2. "No clean" solder paste recommended.
- 3. Tack force high enough to resist component displacement during PCB movement.
- 4. Particles size 20-38 μm per IPCJ STD-005.

DS10560 - Rev 2 page 9/13

3.4 Placement


- It is recommended to use leads recognition instead of package outline for accurate placement on footprint with adequate resolution tool.
- 2. Tolerance of ±50 µm (25% offset allowed on the smallest dimension of the smallest pad) is recommended.
- 3. 1.0 N placement force is recommended. Too much placement force can lead to squeezed out solder paste and cause solder joints to short. Too low placement force can lead to insufficient contact between package and solder paste that could cause open solder joints or badly centered packages.
- 4. For assembly, a perfect supporting of the PCB (all the more on flexible PCB) is recommended during solder paste printing, pick and place and reflow soldering by using optimized tools.

3.5 PCB design preference

- 1. Any via around or inside the footprint area must be closed to avoid solderpaste migration in the via.
- Position and dimensions of the tracks should be well balanced. A symmetrical layout is recommended to prevent assembly troubles.

3.6 Reflow profile

Figure 28. ST ECOPACK recommended soldering reflow profile for PCB mounting

Note: Minimize air convection currents in the reflow oven to avoid component movement. O₂ rate inside the oven must be below 500 ppm. Maximum soldering profile corresponds to the latest IPC/JEDEC J-STD-020.

DS10560 - Rev 2 page 10/13

4 Ordering information

Figure 29. Ordering information scheme

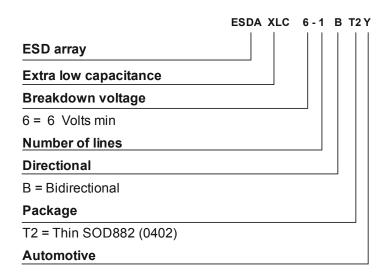


Table 5. Ordering information

Order code	Marking ⁽¹⁾	Package	Weight	Base qty.	Delivery mode
ESDAXLC6-1BT2Y	U	SOD882T (0402)	0.80 mg	12000	Tape and reel

1. The marking can be rotated by multiples of 90° to differentiate assembly location

DS10560 - Rev 2 page 11/13

Revision history

Table 6. Document revision history

Date	Version	Changes
03-Nov-2014	1	Initial release.
03-May-2021	2	Updated SOD882T (0402) package information. Minor text changes.

DS10560 - Rev 2 page 12/13

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics - All rights reserved

DS10560 - Rev 2 page 13/13