The SN54F299 is obsolete and no longer supplied.

- Four Modes of Operation:
- Hold (Store)
- Shift Right
- Shift Left
- Load Data
- Operates With Outputs Enabled or at High Impedance
- 3-State Outputs Drive Bus Lines Directly
- Can Be Cascaded for N-Bit Word Lengths
- Direct Overriding Clear
- Applications:
- Stacked or Pushdown Registers
- Buffer Storage
- Accumulator Registers

description/ordering information

These 8 -bit universal shift/storage registers feature multiplexed I/O ports to achieve full 8-bit data handling in a single 20 -pin package. Two function-select (S0, S1) inputs and two output-enable ($\overline{\mathrm{OE} 1,} \overline{\mathrm{OE} 2}$) inputs can be used to choose the modes of operation listed in the function table.

Synchronous parallel loading is accomplished by taking both S0 and S1 high. This places the 3 -state outputs in a high-impedance state and permits data that is applied on the I/O ports to be clocked into the register. Reading out of the register can be accomplished while the outputs are enabled in any mode. Clearing occurs when the clear ($\overline{\mathrm{CLR})}$ input is low. Taking either $\overline{\mathrm{OE}}$ or $\overline{\mathrm{OE} 2}$ high disables the outputs but has no effect on clearing, shifting, or storage of data.

ORDERING INFORMATION

T_{A}	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP - N	Tube of 20	SN74F299N	SN74F299N
	SOIC - DW	Tube of 25	SN74F299DW	F299
		SN74F299DWR		
	SOP - NS	Reel of 2000	SN74F299NSR	$74 F 299$

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

SN54F299... FK PACKAGE (TOP VIEW)

FUNCTION TABLE

MODE	INPUTS								I/O PORTS								OUTPUTS	
	$\overline{\text { CLR }}$	S1	So	$\overline{\mathrm{OE}} \dagger$	$\overline{\mathrm{OE} 2} \dagger$	CLK	SL	SR	$\mathrm{A}^{\prime} \mathrm{Q}_{\mathbf{A}}$	B / Q_{B}	$\mathrm{C} / \mathrm{Q}_{\mathrm{C}}$	D / Q_{D}	E / Q_{E}	F/Q ${ }_{\text {F }}$	$\mathrm{G} / \mathrm{Q}_{\mathrm{G}}$	H/Q Q_{H}	$Q_{\mathbf{A}^{\prime}}$	$\mathrm{Q}_{\mathbf{H}^{\prime}}$
Clear	L	X	L	L	L	X	X	X	L	L	L	L	L	L	L	L	L	L
	L	L	X	L	L	X	X	X	L	L	L	L	L	L	L	L	L	
	L	H	H	X	X	X	X	X	X	X	X	X	X	X	X	X	L	L
Hold	H	L	L	L	L	X	X	X	$\mathrm{Q}_{\text {A0 }}$	QB0	Q ${ }_{\text {co }}$	QD0	QE0	QF0	QG0	Qно	QA0	QH0
	H	X	X	L	L	L	X	X	QA0	QB0	Q ${ }_{\text {C0 }}$	$Q_{\text {D0 }}$	QE0	QF0	$Q_{G 0}$	QH0	QA0	QH0
Shift	H	L	H	L	L	\uparrow	X	H	H	$Q_{\text {An }}$	Q_{Bn}	$Q_{\text {Cn }}$	QDn	QEn	QFn	$Q_{G n}$	H	$Q_{G n}$
Right	H	L	H	L	L	\uparrow	X	L	L	$Q_{\text {An }}$	$Q_{B n}$	$Q_{C n}$	Q ${ }_{\text {Dn }}$	QEn	$Q_{\text {Fn }}$	$Q_{G n}$	L	$Q_{G n}$
Shift	H	H	L	L	L	\uparrow	H	X	QBn	$Q_{C n}$	QDn	$Q_{\text {En }}$	QFn	$Q_{G n}$	Q_{Hn}	H	Q ${ }_{\text {Bn }}$	H
Left	H	H	L	L	L	\uparrow	L	X	QBn	$Q_{C n}$	QDn	QEn	Q_{Fn}	$Q_{G n}$	QHn	L	QBn	L
Load	H	H	H	X	X	\uparrow	X	X	a	b	c	d	e	f	g	h	a	h

NOTE: a . . $\mathrm{h}=$ the level of the steady-state input at inputs A through H , respectively. This data is loaded into the flip-flops while the flip-flop outputs are isolated from the I/O terminals.
\dagger When one or both output-enable inputs are high, the eight I/O terminals are disabled to the high-impedance state; however, sequential operation or clearing of the register is not affected.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, ${ }^{\text {CC }}$	-0.5 V to 7 V
Input voltage range, V_{I} (see Note 1)	-1.2 V to 7 V
Input current range	-30 mA to 5 mA
Voltage range applied to any output in the disabled or power-off state	0.5 V to 5.5 V
Voltage range applied to any output in the high state	-0.5 V to V_{CC}
Current into any output in the low state: $\mathrm{Q}_{\mathrm{A}^{\prime}}$ or $\mathrm{Q}_{\mathrm{H}^{\prime}}$	40 mA
SN54F299 ($\mathrm{Q}_{\text {A }}$ thru Q_{H})	0 mA
SN74F299 ($\mathrm{Q}_{\text {A }}$ thru Q_{H})	48 mA
Package thermal impedance, $\theta_{\text {JA }}$ (see Note 2): DW package	$58^{\circ} \mathrm{C} / \mathrm{W}$
N package	$69^{\circ} \mathrm{C} / \mathrm{W}$
NS package	$60^{\circ} \mathrm{C} / \mathrm{W}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$	$65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
esses beyond those listed under "absolute maximum ratings" may cause permanent dama ctional operation of the device at these or any other conditions beyond those indicated plied. Exposure to absolute-maximum-rated conditions for extended periods may affect der	ess ratings only, and ng conditions" is not
ES: 1. The input voltage ratings may be exceeded provided the input current ratings a	
2. The package thermal impedance is calculated in accordance with JESD 51-7.	

recommended operating conditions (see Note 3)

			SN54F299			SN74F299			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8			0.8	V
IIK	Input clamp current				-18			-18	mA
		$\mathrm{Q}_{\mathrm{A}^{\prime}}$ or $\mathrm{Q}_{H^{\prime}}$			-1			-1	mA
OH	h-level output current	Q_{A} thru Q_{H}			-3			-3	
${ }^{\text {IOL}}$	Low-level output current	$Q_{A^{\prime}}$ or $Q_{H^{\prime}}$			20			20	mA
		Q_{A} thru Q_{H}			20			24	
T_{A}	Operating free-air temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN54F299		SN74F299		UNIT		
		MIN	TYPt MAX	MIN	TYP† MAX					
V_{IK}				$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$		-1.2		-1.2	V
V OH	$\mathrm{Q}_{\mathrm{A}^{\prime}}$ or $\mathrm{Q}_{H^{\prime}}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{I} \mathrm{OH}=-1 \mathrm{~mA}$	2.5	3.4	2.5	3.4	V		
	Q_{A} thru Q_{H}		$\mathrm{I}^{\mathrm{OH}}=-1 \mathrm{~mA}$	2.5	3.4	2.5	3.4			
			$\mathrm{I} \mathrm{OH}=-3 \mathrm{~mA}$	2.4	3.3	2.4	3.3			
	Any output	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{I} \mathrm{OH}=-1 \mathrm{~mA}$ to -3 mA			2.7				
VOL	$\mathrm{Q}_{\mathrm{A}^{\prime}}$ or $\mathrm{Q}_{\mathrm{H}^{\prime}}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOL}=20 \mathrm{~mA}$		0.300 .5		0.30 .5	V		
	QA thru $\mathrm{QH}_{\text {H }}$		$\mathrm{IOL}=20 \mathrm{~mA}$		$0.3-0.5$					
			$\mathrm{l} \mathrm{OL}=24 \mathrm{~mA}$				$0.35 \quad 0.5$			
1	A thru H	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$		1		1	mA		
	Any other		$\mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$		0.1		0.1			
${ }_{11}{ }^{\ddagger}$	A thru H	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$		70		70	$\mu \mathrm{A}$		
	Any other				20		20			
${ }_{1 / 2}{ }^{\ddagger}$	A thru H	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=0.5 \mathrm{~V}$		-0.65		-0.65	mA		
	S0 or S1				-1.2		-1.2			
	Any other				-0.6		-0.6			
los§		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0$	-60	-150	-60	-150	mA		
ICC		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	See Note 4		$68 \quad 95$		$68 \quad 95$	mA		

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For I/O ports (Q_{A} thru $\left.Q_{H}\right)$, the parameters l_{IH} and I_{IL} include the off-state output current.
\S Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
NOTE 4: ICC is measured with $\overline{\mathrm{OE} 1}, \overline{\mathrm{OE} 2}$, and CLK at 4.5 V .
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

TI Inactive-state setup time also is referred to as recovery time.
switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ \mathrm{~T}_{\mathbf{A}}=25^{\circ} \mathrm{C} \\ \hline \text { ' } \mathrm{F} 299 \end{gathered}$			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=\operatorname{MIN} \text { to MAX } \dagger \end{aligned}$				UNIT
						SN54F299		SN74F299		
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
${ }_{\text {max }}$			70	100		65		70		MHz
tPLH	CLK	$\mathrm{Q}_{\mathrm{A}^{\prime}}$ or QH^{\prime}	3.2	6.6	9	2.7	10.5	3.2	10	ns
tPHL			2.7	6.1	8.5	2.2	10	2.7	9.5	
tPLH	CLK	Q_{A} thru Q_{H}	3.2	6.6	9	2.7	11	3.2	10	ns
tPHL			4.2	8.1	11	3.7	12.5	4.2	12	
tPHL	$\overline{C L R}$	$\mathrm{Q}_{\mathrm{A}^{\prime}}$ or $\mathrm{Q}_{\mathrm{H}^{\prime}}$	3.7	7.1	9.5	3.2	11.5	3.7	10.5	ns
		Q_{A} thru Q_{H}	5.7	10.6	14	5	15.5	5.7	15	
tPZH	$\overline{\mathrm{OE} 1}$ or $\overline{\mathrm{OE} 2}$	Q_{A} thru Q_{H}	2.7	5.6	8	2.2	10.5	2.7	9	ns
tPZL			3.2	6.6	10	2.7	12	3.2	11	
tPHZ	$\overline{\mathrm{OE} 1}$ or $\overline{\mathrm{OE} 2}$	Q_{A} thru Q_{H}	1.7	4.1	6	1.7	9	1.7	7	ns
tPLZ			1.2	3.6	5.5	1.2	7.5	1.2	6.5	

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$, duty cycle $=50 \%$.
D. The outputs are measured one at a time, with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
SN74F299DW	ACTIVE	SOIC	DW	20	25	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	F299	Samples
SN74F299DWR	ACTIVE	SOIC	DW	20	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	F299	Samples
SN74F299N	ACTIVE	PDIP	N	20	20	RoHS \& Non-Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74F299N	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: Tl defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

[^0]TeXAS

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width $\mathbf{W 1}(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
SN74F299DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1

PACKAGE MATERIALS INFORMATION

All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length $(\mathbf{m m})$	Width $(\mathbf{m m})$	Height (mm)
SN74F299DWR	SOIC	DW	20	2000	367.0	367.0	45.0

TUBE

B - Alignment groove width
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T ($\boldsymbol{\mu m}$)	B ($\mathbf{m m}$)
SN74F299DW	DW	SOIC	20	25	507	12.83	5080	6.6
SN74F299N	N	PDIP	20	20	506	13.97	11230	4.32

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

NOTES:

1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side
5. Reference JEDEC registration MS-013.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL

SCALE:6X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

[^0]: In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

