Single (NC) Normally Closed SPST Analog Switch

The NS5B1G384 is Single Pole Single Throw (SPST) high-speed TTL-compatible switch. The low resistance and capacitance characteristics of this switch make it ideal for low-distortion audio, video, and data routing applications. The switch has a normally closed logic configuration meaning the switch is on (NC connected to COM) when IN is low. These switches are available in 5-pin SC-70 and 5-pin TSOP-5 (SOT23-5) packages for operation over the industrial (-40°C to +85°C) temperature range.

• V_{CC} Operating Range: 2.0 V to 5.5 V

• Low On Resistance : R_{ON} : 4.0 Ω Typical @ V_{CC} = 4.5 V

• Minimal Propagation Delay: t_{pd} < 0.5 ns

• Control Input Compatible with TTL Levels

• ESD Performance: Human Body Model > ±2 kV

• 5-Pin SC-70 or 5-Pin TSOP-5 Packages Available

• These are Pb-Free Devices

Typical Applications

• Audio, Video, and High-Speed Data Switching

• Mobile Phones

• Portable Devices

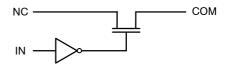
• Desktop & Notebook Computing

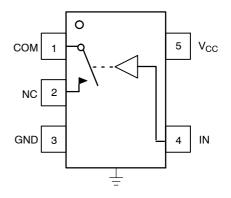
ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

SC-70 CASE 419A


TSOP-5 (SOT23-5) CASE 483


AG = For SC-70 AD = For TSOP-5 M = Date Code

= Pb-Free Package(Note: Microdot may be in either location)

LOGIC DIAGRAM

PIN ASSIGNMENTS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

PIN DESCRIPTION

PIN#	Name	Direction	Description
1	COM	I/O	Common Signal Line
2	NC	I/O	Normally Closed Signal Line
3	GND	Input	Ground
4	IN	Input	Control Signal Line
5	V _{CC}	Input	Voltage Supply

TRUTH TABLE

IN Control Input	Function		
L	NC Connected to COM		
Н	NC Disconnected from COM		

MAXIMUM RATINGS

Symbol	Pins	Rating	Value	Condition	Unit
V _{CC}	V _{CC}	Positive DC Supply Voltage	-0.5 to +7.0		V
V _{IS}	NC or COM	Analog Signal Voltage	-0.5 to V _{CC} + 0.5		V
V _{IN}	IN	Control Input Voltage	-0.5 to +7.0		V
I _{IS_CON}	NC or COM	Analog Signal Continuous Current	±300	Closed Switch	mA
I _{IS_PK}	NC or COM	Analog Signal Peak Current	±500	10% Duty Cycle	mA
I _{IN}	IN	Control Input Current	±20		mA
T _{STG}		Storage Temperature Range	-65 to 150		°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Pins	Parameter	Value	Condition	Unit
V _{CC}	V _{CC}	Positive DC Supply Voltage	2.0 to 5.5		V
V _{IS}	NC or COM	Analog Signal Voltage	GND to V _{CC}		V
V _{IN}	IN	Control Input Voltage	GND to 5.5		V
T _A		Operating Temperature Range	-40 to +85		°C
t _r , t _f		Input Rise or Fall Time	20	V _{CC} = 3.3 V	ns/V
			10	V _{CC} = 5.0 V	1

Minimum and maximum values are guaranteed through test or design across the **Recommended Operating Conditions**, where applicable. Typical values are listed for guidance only and are based on the particular conditions listed for each section, where applicable. These conditions are valid for all values found in the characteristics tables unless otherwise specified in the test conditions.

ESD PROTECTION

Pins	Description	Minimum Voltage
All Pins	Human Body Model	2 kV

DC ELECTRICAL CHARACTERISTICS

CONTROL INPUT (Typical: T = 25°C)

				V _{CC}	-40	0°C to +85	°C	
Symbol	Pins	Parameter	Test Conditions	(V)	Min	Тур	Max	Unit
V _{IH}	IN	Control Input High		4.5 – 5.5	2.0			V
V _{IL}	IN	Control Input Low		4.5 – 5.5			0.8	V
I _{IN}	IN	Control Input Leakage	$0 \le V_{IN} \le V_{CC}$	5.0		±0.1	±0.5	μΑ

SUPPLY CURRENT AND LEAKAGE (Typical: $T = 25^{\circ}C$)

				V _{cc}	-40	0°C to +85	s°C	
Symbol	Pins	Parameter	Test Conditions	(V)	Min	Тур	Max	Unit
I _{NC} (OFF)	NC	OFF State Leakage	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $V_{NC} = 1.0 \text{ V}$ $V_{COM} = 4.5 \text{ V}$	5.5		±10	±100	nA
I _{COM} (OFF)	COM	OFF State Leakage	$\begin{aligned} V_{IN} &= V_{IL} \text{ or } V_{IH} \\ V_{NC} &= 4.5 \text{ V} \\ V_{COM} &= 1.0 \text{ V} \end{aligned}$	5.5		±10	±100	nA
I _{CC}	V _{CC}	Quiescent Supply	V_{IN} and $V_{IS} = V_{CC}$ or GND $I_D = 0$ A	2.0 – 5.5		±0.1	±1.0	μА
I _{OFF}	IN	Power Off Leakage	V _{IN} = 5.5 V or GND	0		±0.5	±1.0	μΑ

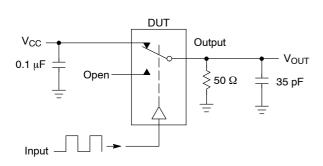
ON RESISTANCE (Typical: T = 25°C)

				V _{CC}	-40	0°C to +85	°C	
Symbol	Pins	Parameter	Test Conditions	(V)	Min	Тур	Max	Unit
R _{ON}	NC, COM	ON Resistance	$V_{IS} = 0 \text{ V, } I_{ON} = 30 \text{ mA}$ $V_{IS} = 0 \text{ V, } I_{ON} = 64 \text{ mA}$ $V_{IS} = 2.4 \text{ V, } I_{ON} = 15 \text{ mA}$	4.5 4.5 4.5		4.0 4.0 11.5	7.0 7.0 15	Ω

AC ELECTRICAL CHARACTERISTICS

TIMING/FREQUENCY (Typical: T = 25°C, R_L = 50 $\Omega,$ C_L = 35 pF, f = 1 MHz)

				V _{CC}	-40	0°C to +85	°C	
Symbol	Pins	Parameter	Test Conditions	(V)	Min	Тур	Max	Unit
t _{ON}	IN to NC	Turn On Time	As Above, Figures 1 and 2	4.5			6.0	ns
t _{OFF}	IN to NC	Turn Off Time	As Above, Figures 1 and 2	4.5			2.0	ns
t _{PD}	NC to COM	Propagation Delay		4.5			0.5	ns
BW		-3dB Bandwidth	C _L = 5 pF, Figures 3 and 4	4.5		330		MHz


CAPACITANCE (Typical: T = 25°C, R_L = 50 Ω , C_L = 5 pF, f = 1 MHz)

				v _{cc}	-40	0°C to +85	°C	
Symbol	Pins	Parameter	Test Conditions	(V)	Min	Тур	Max	Unit
C _{IN}	IN	Control Input		0 V		2.2		pF
C _{ON}	NC to COM	Through Switch	V _{IN} = 0V	4.5 V		12		pF
C _{OFF}	NC	Unselected Port	V _{IS} = 4.5 V, V _{IN} = 4.5 V	4.5 V		4.1		pF

DEVICE ORDERING INFORMATION

Device Order Number	Package Type	Tape & Reel Size [†]
NS5B1G384DFT2G	SC-70 (Pb-Free)	3000 / Tape & Reel
NS5B1G384DTT1G	TSOP-5 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

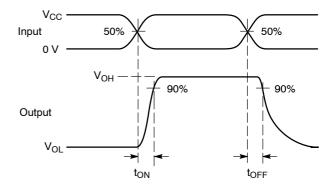
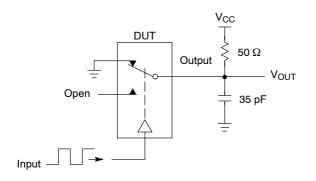



Figure 1. t_{ON}/t_{OFF}

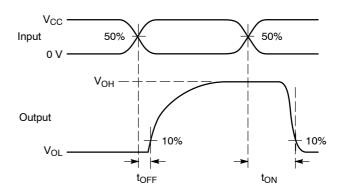
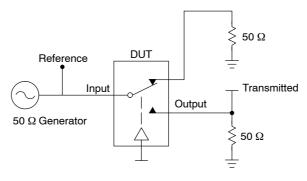



Figure 2. t_{ON}/t_{OFF}

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. V_{ISO} , Bandwidth and V_{ONL} are independent of the input signal direction.

$$V_{ISO}$$
 = Off Channel Isolation = 20 Log $\left(\frac{V_{OUT}}{V_{IN}}\right)$ for V_{IN} at 100 kHz

$$V_{ONL}$$
 = On Channel Loss = 20 Log $\left(\frac{V_{OUT}}{V_{IN}}\right)$ for V_{IN} at 100 kHz to 50 MHz

Bandwidth (BW) = the frequency 3 dB below V_{ONL} V_{CT} = Use V_{ISO} setup and test to all other switch analog input/outputs terminated with 50 Ω

Figure 3. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/VONL

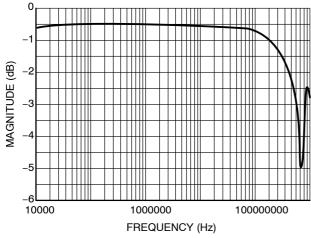


Figure 4. Typical Bandwidth @ $V_{CC} = 5.5 V$, $25^{\circ}C$

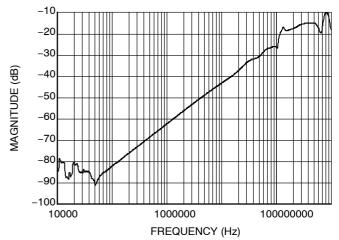


Figure 5. Off–Channel Isolation @ V_{CC} = 5.5 V, $25^{\circ}C$

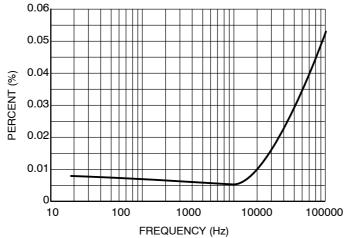


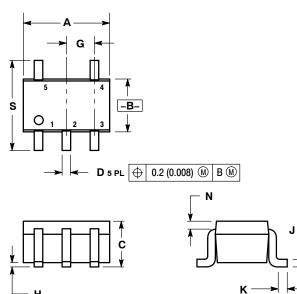
Figure 6. Typical Total Harmonic Distortion @ V_{CC} = 4.5 V

SC-88A (SC-70-5/SOT-353) CASE 419A-02 **ISSUE L**

DATE 17 JAN 2013

- TES:
 DIMENSIONING AND TOLERANCING
 PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 419A-01 OBSOLETE. NEW STANDARD 3.
- 419A-02.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.071	0.087	1.80	2.20
В	0.045	0.053	1.15	1.35
С	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	0.30
G	0.026	BSC	0.65	BSC
Н		0.004		0.10
J	0.004	0.010	0.10	0.25
K	0.004	0.012	0.10	0.30
N	0.008	REF	0.20 REF	
S	0.079	0.087	2 00	2 20


XXX = Specific Device Code

= Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

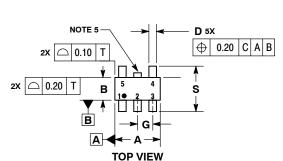
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

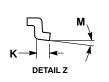
0.50 0.0197 0.65 0.025 0.65 0.025 0.40 0.0157 1.9 mm 0.0748 SCALE 20:1

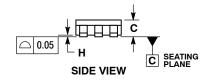
SOLDER FOOTPRINT

STYLE 1: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR	STYLE 2: PIN 1. ANODE 2. EMITTER 3. BASE 4. COLLECTOR	STYLE 3: PIN 1. ANODE 1 2. N/C 3. ANODE 2 4. CATHODE 2	STYLE 4: PIN 1. SOURCE 1 2. DRAIN 1/2 3. SOURCE 1 4. GATE 1	STYLE 5: PIN 1. CATHODE 2. COMMON ANODE 3. CATHODE 2 4. CATHODE 3
5. COLLECTOR	5. CATHODE	5. CATHODE 1	5. GATE 2	5. CATHODE 4

5. COLLECTOR	5. CATHODE	5. CATHODE 1	4. GATE 1 5. GATE 2	5. CATHODE 3
STYLE 6:	STYLE 7:	STYLE 8:	STYLE 9:	Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.
PIN 1. EMITTER 2	PIN 1. BASE	PIN 1. CATHODE	PIN 1. ANODE	
2. BASE 2	2. EMITTER	2. COLLECTOR	2. CATHODE	
3. EMITTER 1	3. BASE	3. N/C	3. ANODE	
4. COLLECTOR	4. COLLECTOR	4. BASE	4. ANODE	
5. COLLECTOR 2/BASE 1	5. COLLECTOR	5. EMITTER	5. ANODE	

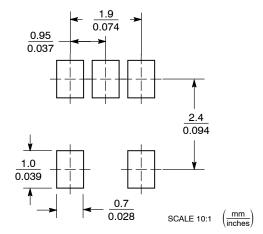

DOCUMENT NUMBER:	98ASB42984B	Electronic versions are uncontrolled except when accessed directly from the Document F Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-88A (SC-70-5/SOT-353)		PAGE 1 OF 1	


ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.



TSOP-5 **CASE 483 ISSUE N**

DATE 12 AUG 2020



NOTES:

- DIMENSIONING AND TOLERANCING PER ASME
- CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
 THICKNESS. MINIMUM LEAD THICKNESS IS THE
 MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A. OPTIONAL CONSTRUCTION: AN ADDITIONAL
- TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.

	MILLIMETERS		
DIM	MIN	MAX	
Α	2.85	3.15	
В	1.35	1.65	
C	0.90	1.10	
D	0.25	0.50	
G	0.95 BSC		
Н	0.01	0.10	
J	0.10	0.26	
K	0.20	0.60	
М	0 °	10 °	
S	2.50	3.00	

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code XXX = Specific Device Code

= Assembly Location = Date Code = Year = Pb-Free Package

= Work Week W = Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ARB18753C	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSOP-5		PAGE 1 OF 1	

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: a Phone: 00421 33 790 2910

Phone: 011 421 33 790 2910 For additional information, please contact your local Sales Representative