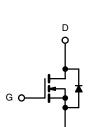


N-Channel 30-V (D-S) MOSFET

PRODUCT SUMMARY							
V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A) ^a	Q _g (Typ.)				
30	0.012 at V _{GS} = 10 V	15	6.8 nC				
30	0.015 at V _{GS} = 4.5 V	13	0.0110				

FEATURES


- · Halogen-free
- TrenchFET® Power MOSFET

- 100 % R_g Tested
- 100 % UIS Tested

APPLICATIONS

- · Notebook CPU Core
 - High-Side Switch

N-Channel MOSFET

	SO-8		
 1 2 3 4		8 7 6 5	D D D
L	Top View	I	

Ordering Information: Si4172DY-T1-GE3 (Lead (Pb)-free and Halogen-free)

ABSOLUTE MAXIMUM RATINGS	S $T_A = 25 ^{\circ}C$, unles	s otherwise no	ted		
Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		V _{DS}	30	V	
Gate-Source Voltage		V_{GS}	± 20		
	T _C = 25 °C		15		
Continuous Drain Current (T _{.1} = 150 °C)	T _C = 70 °C	L_	12		
Continuous Diain Current (1) = 130 C)	T _A = 25 °C	I _D	11 ^{b, c}		
	T _A = 70 °C		9 ^{b, c}		
Pulsed Drain Current		I _{DM}	50	Α Α	
Continuous Course Ducin Diede Courset	T _C = 25 °C	- I _S	3.8		
Continuous Source-Drain Diode Current	T _A = 25 °C		2.1 ^{b, c}		
Single Pulse Avalanche Current		I _{AS}	22		
Avalanche Energy	L = 0.1 mH	E _{AS}	24	mJ	
	T _C = 25 °C		4.5		
Maximum Power Dissipation	T _C = 70 °C	ь [2.8	W	
	T _A = 25 °C	P _D	2.5 ^{b, c}		
	T _A = 70 °C		1.6 ^{b, c}		
Operating Junction and Storage Temperature Ra	T_J , T_{stg}	- 55 to 150	°C		

THERMAL RESISTANCE RATINGS						
Parameter		Symbol	Typical	Maximum	Unit	
Maximum Junction-to-Ambient ^{b, d}	t ≤ 10 s	R _{thJA}	38	50	°C/W	
Maximum Junction-to-Foot (Drain)	Steady State	R_{thJF}	22	28	C/VV	

Notes:

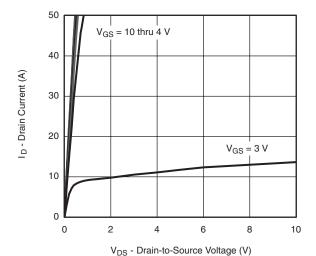
- a. Base on T_C = 25 °C.
- b. Surface Mounted on 1" x 1" FR4 board.
- c. t = 10 s.
- d. Maximum under Steady State conditions is 85 °C/W.

Vishay Siliconix

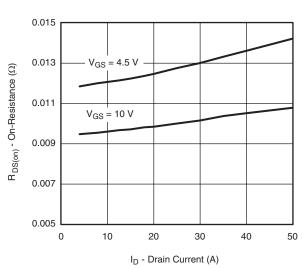
Drain-Source Breakdown Voltage VDS	SPECIFICATIONS $T_J = 25 ^{\circ}\text{C}$ Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Symbol	rest Conditions	IVIIII.	тур.	IVIAX.	Onit	
V _{DS} Temperature Coefficient Δ/V _{DS} /T _J Vo _{S(M)} Pemperature Coefficient Δ/D _D Pemperature Coefficient Λ/D _D Pemperature Coefficie		Vne	V _{GS} = 0 V. I _D = 250 µA	30			l v	
Variety Var					28		mV/°C	
Gate-Source Threshold Voltage V _{GS(th)} V _{DS} = V _{GS} , I _D = 250 μA 1.2 2.5 V Gate-Source Leakage I _{GSS} V _{DS} = 0 V, V _{GS} = 2.20 V ± 100 nA			$I_D = 250 \mu A$		-			
Gate-Source Leakage I_GSS V_DS = 0 V, V_GS = ± 20 V ± 100 nA	· '	+	V _{DS} = V _{GS} . I _D = 250 μA	1.2		2.5	V	
Variable		1					nA	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	g-	400	V _{DS} = 30 V, V _{GS} = 0 V				_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zero Gate Voltage Drain Current	I _{DSS}						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	On-State Drain Current ^a	I _{D(on)}		20			Α	
Drain-Source On-State Resistance Pos(on) Vos = 15 V, I _D = 10 A 0.0122 0.0150 Ω					0.0097	0.0120		
Promard Transconductance Promard Transconductance Promard	Drain-Source On-State Resistance ^a	R _{DS(on)}	46 5				Ω	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Forward Transconductance ^a	9 _{fs}			52		S	
Input Capacitance C Input Capacitance Input Capacitance C Input Capacitance C Input Capacitance Input Capa	Dvnamic ^b					l.	l	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	C _{iss}			820			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Capacitance		$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		195		pF	
			35 45		73			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T. 10 . 01		V _{DS} = 15 V, V _{GS} = 10 V, I _D = 11 A		15	23	nC	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	lotal Gate Charge				6.8	10.2		
Gate Resistance Rg f = 1 MHz 0.36 1.8 3.6 Ω Turn-On Delay Time $t_{d(on)}$ $V_{DD} = 15 \text{ V}$, $R_L = 1.4 \Omega$ 16 24 Rise Time t_r $V_{DD} = 15 \text{ V}$, $R_L = 1.4 \Omega$ 12 18 Fall Time t_r 10 20 Turn-On Delay Time $t_{d(on)}$ 8 16 Rise Time t_r $V_{DD} = 15 \text{ V}$, $R_L = 1.4 \Omega$ 10 20 Turn-Off Delay Time $t_{d(off)}$ $V_{DD} = 15 \text{ V}$, $R_L = 1.4 \Omega$ 10 20 Turn-Off Delay Time $t_{d(off)}$ $V_{DD} = 15 \text{ V}$, $R_L = 1.4 \Omega$ 10 20 Turn-Off Delay Time t_r $V_{DD} = 15 \text{ V}$, $R_L = 1.4 \Omega$ 10 20 Turn-Off Delay Time t_r $V_{DD} = 15 \text{ V}$, $R_L = 1.4 \Omega$ 10 20 Turn-Off Delay Time t_r $V_{DD} = 15 \text{ V}$, $R_L = 1.4 \Omega$ 10 20 Turn-Off Delay Time t_r $V_{DD} = 15 \text{ V}$, $V_{R_0} = 10 \text{ V}$, $V_{R_0} = 10 \text{ V}$ 8 15 Drain-Source Body Diode Characteristics </td <td>Gate-Source Charge</td> <td>Q_{gs}</td> <td>$V_{DS} = 15 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 11 \text{ A}$</td> <td></td> <td>2.5</td> <td></td>	Gate-Source Charge	Q _{gs}	$V_{DS} = 15 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 11 \text{ A}$		2.5			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Drain Charge	Q _{gd}			2.3			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate Resistance	R_g	f = 1 MHz	0.36	1.8	3.6	Ω	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time	t _{d(on)}			16	24		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time	t _r	22 -		12	18		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-Off Delay Time	t _{d(off)}	$I_D \cong 9 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$		16	24		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fall Time	t _f			10	20		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time	t _{d(on)}			8	16	115	
Fall Time $t_{\rm f}$ t_{\rm	Rise Time	t _r	V_{DD} = 15 V, R_L = 1.4 Ω		10	20	- - -	
	Turn-Off Delay Time	t _{d(off)}	$I_D\cong 9$ A, $V_{GEN}=10$ V, $R_g=1$ Ω		16	24		
	Fall Time	t _f			8	15		
Pulse Diode Forward Current ^a I_{SM} 50 Body Diode Voltage V_{SD} $I_{S} = 9$ A 0.8 1.2 V Body Diode Reverse Recovery Time t_{rr} Body Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_{a} $I_{F} = 9$ A, $dI/dt = 100$ A/ μ s, $T_{J} = 25$ °C $I_{S} = 9$ A $I_{S} = 9$	Drain-Source Body Diode Characteris	tics						
Pulse Diode Forward Currenta I_{SM} 50Body Diode Voltage V_{SD} $I_S = 9$ A0.81.2 V Body Diode Reverse Recovery Time t_{rr} 1530nsBody Diode Reverse Recovery Charge Q_{rr} $I_F = 9$ A, $dI/dt = 100$ A/ μ s, $T_J = 25$ °C612nCReverse Recovery Fall Time t_a t_a t_a t_a	Continuous Source-Drain Diode Current	I _S	$T_C = 25 ^{\circ}C$			25	^	
Body Diode Reverse Recovery Time t_{rr} Body Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a $I_F = 9 \text{ A, dI/dt} = 100 \text{ A/µs, T}_J = 25 \text{ °C}$ $Reverse Recovery Fall Time $	Pulse Diode Forward Current ^a	I _{SM}				50	^	
Body Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a $I_F = 9 \text{ A, dI/dt} = 100 \text{ A/}\mu\text{s, T}_J = 25 \text{ °C}$ $6 \qquad 12 \qquad \text{nC}$ $8 \qquad \text{ns}$	Body Diode Voltage	V _{SD}	I _S = 9 A		0.8	1.2	V	
Reverse Recovery Fall Time t _a I _F = 9 A, αl/αt = 100 A/μs, 1 _J = 25 °C 8	Body Diode Reverse Recovery Time	t _{rr}			15	30	ns	
Reverse Recovery Fall Time t _a	Body Diode Reverse Recovery Charge	Q _{rr}	L = 0 A dl/dt = 100 A/vo T = 25 °C		6	12	nC	
Reverse Recovery Rise Time t _b 7	Reverse Recovery Fall Time	t _a	$_{1F} = 9 \text{ A}, \text{ u//ut} = 100 \text{ A/}\mu\text{s}, 1_{J} = 25 ^{\circ}\text{C}$		8			
	Reverse Recovery Rise Time	t _b			7		- ns	

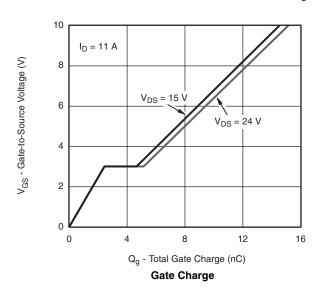
Notes:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

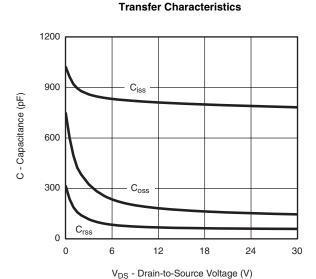

a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %.

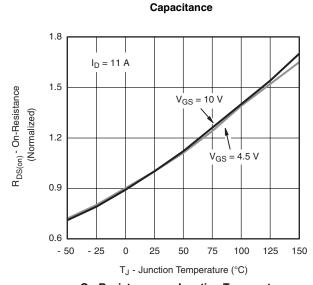
b. Guaranteed by design, not subject to production testing.




TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Output Characteristics

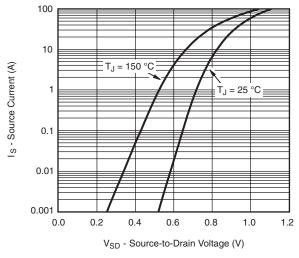

On-Resistance vs. Drain Current and Gate Voltage

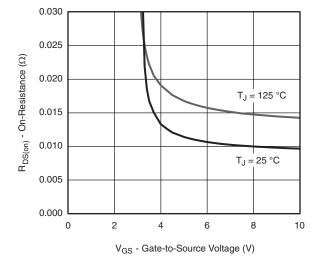

 $T_{C} = -55 \, ^{\circ}C$ To a specific to the state of the

5

V_{GS} - Gate-to-Source Voltage (V)

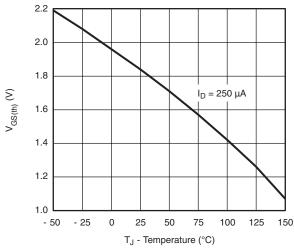
21411110 004100 10110

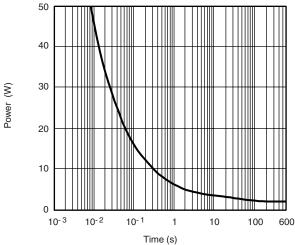



On-Resistance vs. Junction Temperature

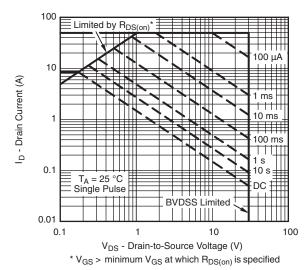
Vishay Siliconix

VISHAY

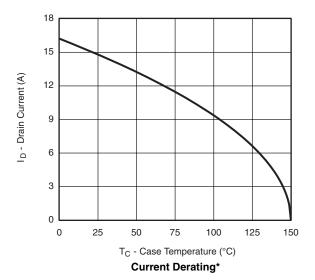

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

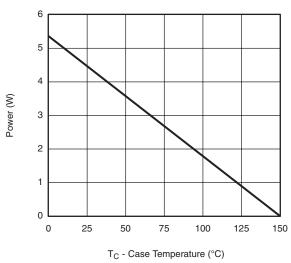


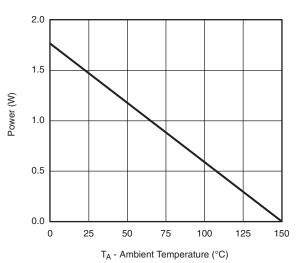
Source-Drain Diode Forward Voltage



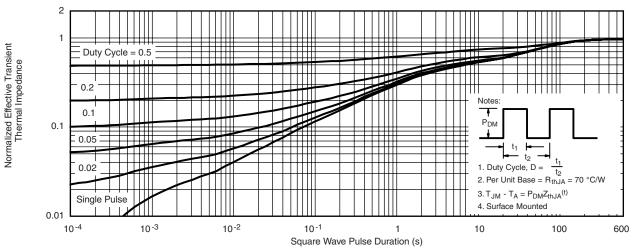
Threshold Voltage


Single Pulse Power, Junction-to-Ambient

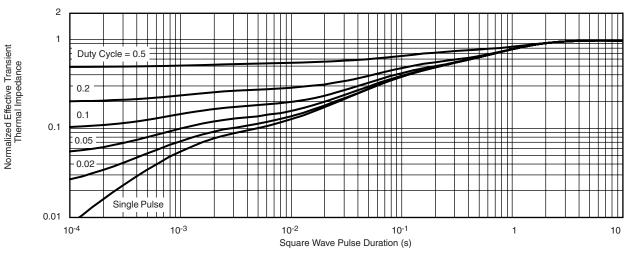



Safe Operating Area, Junction-to-Ambient

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

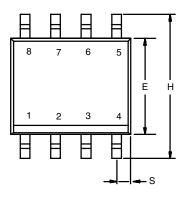

Power Derating, Junction-to-Foot Power Derating, Junction-to-Ambient

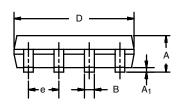
^{*} The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

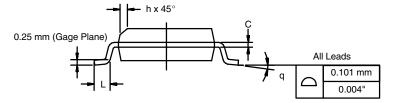

Vishay Siliconix

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

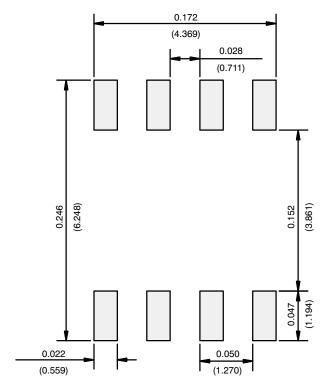
Normalized Thermal Transient Impedance, Junction-to-Ambient




Normalized Thermal Transient Impedance, Junction-to-Foot


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?69000.

SOIC (NARROW): 8-LEAD JEDEC Part Number: MS-012


	MILLIM	IETERS	INCHES			
DIM	Min	Max	Min	Max		
Α	1.35	1.75	0.053	0.069		
A ₁	0.10	0.20	0.004	0.008		
В	0.35	0.51	0.014	0.020		
С	0.19	0.25	0.0075	0.010		
D	4.80	5.00	0.189	0.196		
Е	3.80	4.00	0.150	0.157		
е	1.27	BSC	0.050 BSC			
Н	5.80	6.20	0.228	0.244		
h	0.25	0.50	0.010	0.020		
L	0.50	0.93	0.020	0.037		
q	0°	8°	0°	8°		
S	0.44	0.64	0.018	0.026		
ECN: C-06527-Rev. I. 11-Sep-06						

DWG: 5498

Document Number: 71192 www.vishay.com 11-Sep-06

RECOMMENDED MINIMUM PADS FOR SO-8

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Ш

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.