

MAX77650/MAX77651 Programmer's Guide

UG6428; Rev 3; 1/19

Abstract

The MAX77650/MAX77651 provide highly integrated battery charging and power supply solutions for low-power applications where size and efficiency are critical. The MAX77650/MAX77651 device datasheet provides the complete hardware and electrical description for these devices. This Programmer's Guide focuses on the register map for the devices and provides general advice for programmers.

Table of Contents

1	ОТР Ор	tions	3
2	OTP Reg	gisters Quick Reference Table	3
3	Registe	r Reset Conditions	4
3.1	•	Power-On Reset Comparator (POR)	
	•		
3.2		Reset (SYSRST)	
3.3	CHGPO	Κ	4
3.4	CHGPO	R	4
4	Baseline	e Initialization	5
5	Softwar	e Management of the Charger	6
5.1	Managi	ng VSYS_REG, CHG_CV, and CHG_CV_JEITA	6
6	Managi	ng SIMO Current Limits (IP_SBBx)	7
7	Managi	ng Main-Bias Circuits (SBIA_LPM)	7
8		ng Regulator Output Voltages	
-			
9	•	r Description	
9.1	Registe	r Descriptions: Global Resources	9
	9.1.1	CNFG_GLBL	
	9.1.2	INT_GLBL	
	9.1.3	INTM_GLBL	
	9.1.4	STAT_GLBL	13
	9.1.5	ERCFLAG	14
	9.1.6	CNFG_GPIO	15
	9.1.7	CID	
9.2	Registe	r Descriptions: Charger	17
	9.2.1	INT_CHG	17
	9.2.2	INT_M_CHG	
	9.2.3	STAT_CHG_A	
	9.2.4	STAT_CHG_B	20
	9.2.5	CNFG_CHG_A	21
	9.2.6	CNFG_CHG_B	
	9.2.7	CNFG_CHG_C	23
	9.2.8	CNFG_CHG_D	24
	9.2.9	VSYS_REG Code Table	24
	9.2.10	CNFG_CHG_E	25
	9.2.11	CHG_CC and CHG_CC_JEITA Code Table	
	9.2.12	CNFG_CHG_F	27
	9.2.13	CNFG_CHG_G	
	9.2.14	CHG_CV and CHG_CV_JEITA Code Table	
	9.2.15	CNFG_CHG_H	30
	9.2.16	CNFG_CHG_1	
	9.2.17	IMON_DISCHG_SCALE Code Table	
9.3	Registe	r Descriptions: LDO	
	9.3.1	CNFG_LDO_A	
	9.3.2	TV_LDO Code Table	
	9.3.3	CNFG_LDO_B	
9.4		r Descriptions: SIMO Buck Boost	
	9.4.1	CNFG_SBB_TOP	25
	J. T. 1		

	9.4.2	CNFG_SBB0_A	
	9.4.3	TV_SBB0 Code Table	
	9.4.4	CNFG_SBB0_B	
	9.4.5	CNFG_SBB1_A	
	9.4.6	MAX77650 TV_SBB1 Code Table	
	9.4.7	MAX77651 TV_SBB1 Code Table	41
	9.4.8	CNFG_SBB1_B	
	9.4.9	CNFG_SBB2_A	
	9.4.10	MAX77650 TV_SBB2 Code Table	
	9.4.11	MAX77651 TV_SBB2 Code Table	
	9.4.12	CNFG_SBB2_B	45
9.5	Register	Descriptions: Current Sinks	46
	9.5.1	CNFG_LED0_A	
	9.5.2	CNFG_LED0_B	47
	9.5.3	CNFG_LED1_A	
	9.5.4	CNFG_LED1_B	
	9.5.5	CNFG_LED2_A	50
	9.5.6	CNFG_LED2_B	51
	9.5.7	CNFG_LED_TOP	
	9.5.8	BRT_LEDx Code table when LED_FSx = 0b01	53
	9.5.9	BRT_LEDx Code table when LED_FSx = 0b10	53
	9.5.10	BRT_LEDx Code table when LED_FSx = 0b11	
10	Revision	Listory	55

1 OTP Options

Each register table that appears within this Programmer's guide has a column for the register default value. If the default value is fixed for all versions of this device, then the value will appears as "0" or "1". If the default value is one-time factory programmable (OTP) it will vary depending on the version of device you are using and will be listed as "x". Refer to the "OTP Registers Quick Reference Table" to determine the default values for a given device.

	MAX77650A	MAX77650B	MAX77650C	MAX77650M	MAX77651A	MAX77651B
CID	0x3	OxE	0xA	0x8	0x6	0x8
DIDM	0x0	0x0	0x0	0x0	0x1	0x1
I2C Addr.	0x48	0x48	0x48	0x48	0x48	0x48
SBIA_LPM_DEF	normal mode					
DBEN_nEN	100µs	100µs	30ms	100µs	30ms	30ms
VCHGIN_MIN	4.0V	4.0V	4.0V	4.0V	4.0V	4.0V
ICHGIN_LIM	95mA	475mA	475mA	475mA	95mA	95mA
CHG_EN	disabled	disabled	disabled	disabled	disabled	disabled
MRT_OTP	16s reset	16s reset	8s reset	16s reset	16s reset	8s reset
IP_SBB0	0.5A	1.0A	1.0A	1.0A	0.5A	1.0A
TV_SBB0	2.05V	1.8V	1.8V	1.8V	1.8V	1.9V
EN_SBB0	FPS slot 0	FPS slot 1	FPS slot 2	FPS slot 1	off	FPS slot 0
ADE_SBB0	enabled	enabled	enabled	enabled	enabled	enabled
IP_SBB1	0.5A	0.866A	1.0A	1.0A	0.5A	1.0A
TV_SBB1	1.2V	1.2V	1.0V	1.2V	4.6V	3.2V
EN_SBB1	FPS slot 3	FPS slot 0	FPS slot 0	FPS slot 0	off	FPS slot 2
ADE_SBB1	enabled	enabled	enabled	enabled	enabled	enabled
IP_SBB2	0.5A	0.5A	1.0A	1.0A	0.5A	1.0A
TV_SBB2	3.3V	3.15V	1.2V	3.15V	3.6V	5.2V
EN_SBB2	FPS slot 0	FPS slot 3	FPS slot 1	FPS slot 3	off	off
ADE_SBB2	enabled	enabled	enabled	enabled	enabled	enabled
TV_LDO	1.85V	2.85V	1.5V	2.85V	2.85V	1.85V
EN_LDO	FPS slot 1	FPS slot 2	FPS slot 3	FPS slot 2	FPS slot 0	off
ADE_LDO	enabled	enabled	enabled	enabled	enabled	enabled

2 OTP Registers Quick Reference Table

3 Register Reset Conditions

3.1 System Power-On Reset Comparator (POR)

The SYS POR comparator monitors V_{SYS} and generates a power-on reset signal (POR). When V_{SYS} is below V_{POR} , the device is held in reset (SYSRST=1). When V_{SYS} rises above V_{POR} , internal signals and on-chip memory stabilize and the device is released from reset (SYSRST=0).

3.2 System Reset (SYSRST)

The majority of the registers within the device have the reset condition of SYSRST=1. The SYSRST signal is created by the "On/Off Controller" logic and is continuously high when the system voltage is lower than the power-on reset threshold (V_{SYS} < V_{POR}). Additionally, SYSRST is pulsed high to reset the registers during the on/off controller's "immediate shutdown" routine and "power-down sequence" routine (See the datasheet's *On/Off Controller* section for more information).

3.3 CHGPOK

Registers with reset conditions specified as CHGPOK are held in their reset state whenever V_{CHGIN}<V_{CHGIN}_UVLO</sub> or USBS=1. These registers contain charger status information and the charger input current limit setting. Writes to these register while they are being held in reset are ignored.

3.4 CHGPOR

The USBS bitfield is held in its reset state whenever $V_{CHGIN} < 1.8V$. Writes to USBS while it is held in reset are ignored.

4 Baseline Initialization

Each time the system's microprocessor boots, execute initialization code for the device per the following guidelines:

- A) To maximize performance, set the main bias circuits to operate in normal power mode (SBIA_LPM=0).
 - a. See the *Managing Main-Bias Circuits* section for more information.
- B) The default ONKEY style is for push-button. If your system is using a slide-switch style ONKEY, then set nEN_MODE = 1.
- C) The default ONKEY debounce time is factory programmable with OTP. If your system prefers a time that is different that the factory programmed value program DBEN_nEN accordingly.
- D) Read the DIDM[1:0] and CID[2:0] to make sure that the correct version of the device is installed in your hardware.
 - a. This version checking routine is highly recommended to catch any issues during the manufacturing process. For example, some manufacturers stock multiple versions of this device and this step help protect against any mixing of the stock.
- E) Read the ERCFLAG register and take any necessary actions based on its information.
- F) Read the interrupt and status registers INT_GLBL, STAT_GLBL, INT_CHG, STAT_CHG_A, STAT_CHG_B and take any necessary actions based on their information.
- G) Set interrupt masks INT_GLBLM and INT_M_CHG as desired.
 - a. It is highly recommended that systems using the battery charger program CHGIN_M=0 so that they are notified through the nIRQ pin when an adapter has been plugged or unplugged from the device. See the *Software Management of the Charger* section for more information.
- H) Set the GPIO as desired with the CNFG_GPIO register
- I) Set the thermistor thresholds with the CNFG_CHG_A register
- J) Configure each charger parameter with the reset condition of SYSRST = 1.
 - a. Charger parameters with reset condition of CHGPOK do not need to be managed in the baseline initialization routine. See the *Software Management of the Charger* section for more information.
- K) Configure the active discharge bits per your preference: ADE_SBB0, ADE_SBB1, ADE_SBB2, ADE_LDO.
- L) To maximize efficiency, program the SIMO drive strength to the highest setting (DRV_SBB = 0b00).
 - a. If noise issues appear in the system, experiment with slower setting options.
- M) Adjust the SIMO current limits per your systems output current requirements (IP_SBB0[1:0], IP_SBB1[1:0], IP_SBB2[1:0]).
 - a. Note that it is generally recommended to keep the SIMO current limits as low as possible. See the *Managing SIMO Current Limits* section for more information.
- N) To get the best quiescent current performance, set the main bias circuits to operate in low-power mode (SBIA_LPM=1) before finishing the initialization routine.

5 Software Management of the Charger

- 1. All of the charger configuration except for the charger input current limit (ICHGIN_LIM) should be managed in the baseline initialization routine. See the *Baseline Initialization* section for more information.
 - a. It is a common misperception that the fast charge current limit should be modulated based off the available capacity of the charge adapter and/or the system load current requirements. This is not correct. The fast charge current limit should be set based on the characteristics of the battery only. The charger automatically modulates the charge current as required to meet the input current limit or provide for system load current.
- 2. Although the charger configuration happens during the baseline initialization, it is recommended that the processor read the charge configuration information periodically during the charge cycle as a safety measure to ensure everything is as it should be. It is critical that the battery regulation voltage (CHG_CV[5:0]) be correct.
- 3. Within the Baseline Initialization routine, program the charger interrupt mask (CHGIN_M) to 0. This allows any change in the charger input (CHGIN) status to be directly reported to the processor via the interrupt pin (nIRQ). See the *Baseline Initialization* section for more information.
- 4. When the charger input interrupt is pending (CHGIN_I=1), read the CHG_DTLS:
 - a. when the charger input is okay (CHGIN_DTLS=0b11):
 - i. enumerate the charger input if it is a USB source (not through the MAX77650/51)
 - ii. program the desired charger input current limit (ICHGIN_LIM[2:0])
 - iii. Read the charge configuration information to ensure it matches the desired values programmed by the baseline initialization routine. This step is not necessary but it is a recommended safety measure.
 - iv. enable the charger (CHG_EN=1)
 - b. when the charger input is in undervoltage lockout (CHGIN_DTLS=0b00):
 - i. disable the charger (CHG_EN=0)
 - ii. note that the charger input current limit (ICHGIN_LIM) is continuously held in reset during this condition
 - c. when the charger input is in overvoltage lockout (CHGIN_DTLS=0b01):
 - i. disable the charger (CHG_EN=0)
 - 1. this isn't really necessary but recommended
 - ii. based on the user experience desired, software can either do nothing or provide a message to the user that something is wrong with their charge adapter and they should remove it from the device
 - d. when the charger input is being debounce (CHGIN_DTLS=0b10)
 - i. based on the user experience desired, software can either do nothing or provide a message to the user that the charger input has been applied to the system
 - 1. Note that the charger input debounce time $(t_{CHGIN-DB})$ is typically 120ms.

5.1 Managing VSYS_REG, CHG_CV, and CHG_CV_JEITA

Program VSYS_REG to at least 200mV above the higher of CHG_CV and CHG_CV_JEITA. Any write request that violates this requirement will cause the device to force CHG_CV and CHG_CV_JEITA to conform to this restraint.

Example 1: Program CHG_CV to any value above (VSYS_REG - 200mV)

If a write command tries to program CHG_CV to any value above (VSYS_REG – 200mV), the device overrides the write and programs CHG_CV to (VSYS_REG – 200mV).

For example, VSYS_REG = 4.5V and CHG_CV = 3.6V. A command tries to write CHG_CV to 4.4V; the device will override this and programs CHG_CV to 4.3V.

Example 2: Program VSYS_REG below (CHG_CV + 200mV)

If a write command tries to program VSYS_REG below (CHG_CV + 200mV), the device writes VSYS_REG to the requested voltage, but forces CHG_CV to (VSYS_REG – 200mV).

For example, VSYS_REG = 4.5V and CHG_CV = 4.2V. A command programs VSYS_REG to 4.1V; the device will automatically program CHG_CV to 3.9V.

Example 3: Programming VSYS_REG, CHG_CV, CHG_CV_JEITA Use Case

Take the following case: existing settings: VSYS_REG = 4.2V, CHG_CV = 3.6V, CHG_CV_JEITA = 3.6V desired settings: VSYS_REG = 4.4V, CHG_CV = 4.2V, CHG_CV_JEITA = 4.1V Incorrect Method:

- 1) program CHG_CV=4.2V
- 2) program CHG_CV_JEITA=4.1V
- 3) program VSYS_REG=4.4V

resulting settings are wrong: VSYS_REG = 4.4V, CHG_CV = 4.0V, CHG_CV_JEITA = 4.0V

Correct Method:

- 1) program VSYS_REG=4.4V
- 2) program CHG_CV=4.2V
- 3) program CHG_CV_JEITA=4.1V

resulting settings are correct: VSYS_REG = 4.4V, CHG_CV = 4.2V, CHG_CV_JEITA = 4.1V

6 Managing SIMO Current Limits (IP_SBBx)

The available output current on a given SIMO channel is a function of the input voltage, the output voltage, the peak current limit setting, and the output current of the other SIMO channels. Maxim offers a SIMO calculator that outlines the available capacity for specific conditions.

Generally speaking, applications should use the lowest possible SIMO peak current limit for a given mode of operation. Lower SIMO peak current settings give better efficiency, lower output voltage ripple, and lower noise. For example, if a system has increasing power states of OFF>>HIBERNATE>>STANDBY>> ACTIVE, then it is recommended to tailor the SIMO current limits for the power needs of each particular state. HIBERNATE may use 500mA for each SIMO channel, STANDBY may use 0.866A, 0.707A, and 0.5A for SIMO SBB0, SBB1, and SBB2, while ACTIVE may use 1A for each SIMO channel. Once again, see the SIMO calculator for guidance on how to size the current limits for a given set of power needs.

7 Managing Main-Bias Circuits (SBIA_LPM)

- 1) Applications that are not concerned about quiescent current may leave the main-bias circuits in their normal-power mode indefinitely (SBIA_LPM=0)
- 2) Applications that are concerned about quiescent current and want to have a simple software structure may leave the main-bias circuits in their low-power mode indefinitely (SBIA_LPM=1).
- 3) Applications that want to maximize performance and have low quiescent current should dynamically control the main-bias circuits (SBIA_LPM).
 - a) To maximize performance, set the main bias circuits to operate in normal power mode (SBIA_LPM=0) whenever the system is doing a significant task. A tasks' significance is judged according to how much quiescent current is consumed current is consumed by the system in order to accomplish that task relative to the quiescent current of the MAX77650/51 when it is in its low-power mode. Since the MAX77650/51 consumes ~5.6uA when all resources are enabled and its bias circuits in are low-power mode, then any task that is expected to consume more than ~2mA is significant.
 - b) To get the best quiescent current performance, set the main bias circuits to operate in low-power mode (SBIA_LPM=1) whenever the system's current consumption is less than ~2mA.

8 Changing Regulator Output Voltages

The regulator output voltages are programmable. When a regulator is off, the output voltage may be directly programmed. However, when the regulator is on and the output voltage needs to be increased or decrease program a voltage ramp from the existing voltage to the new desired voltage. Programming a ramp is recommended for voltage increases to minimize inrush current. Programming a ramp is recommended on voltage decreases to minimize regulator undershoot when it reaches its target voltage.

Example 4: Enabling a regulator to a static output voltage

- 1. When the regulator is disabled, program the output voltage to the desired value.
- 2. To maximize performance, set the main bias circuits to operate in normal-power mode. (SBIA_LPM=0), wait 100us afterwards for the bias circuits to settle (not really needed but still a good idea).
- 3. Turn the regulator on.
- 4. To get the best quiescent current performance, wait for 2ms for the regulator to stabilize (enable delay + soft-start ramp + margin), and then program the main bias circuits to operate in low-power mode (SBIA_LPM=1).

Example 5: ramping a regulator output voltage while it is enabled

- 1. To maximize performance, set the main bias circuits to operate in normal-power mode (SBIA_LPM=0), wait 100us afterwards for the bias circuits to settle (not really needed but still a good idea).
- 2. Ramp the regulator output voltage <u>one LSB</u> at a time (increasing or decreasing) until the target voltage is reached.
 - a. Note that for all regulators except the MAX77651 SBB1 the target voltage code tables are linear so, to step one LSB at a time, software can simply increment or decrement the bitfield value. However, for the MAX77651 SBB1, the code table is not linear and software should ensure that the output voltage is being stepped 50mV at a time. See section 10.4.7 MAX77651 TV SBB1 Code Table for more information.
- 3. To get the best quiescent current performance, wait for 2ms for the regulator to stabilize (enable delay + softstart ramp + margin), and then program the main bias circuits to operate in low-power mode (SBIA_LPM=1).

9 Register Description

The following tables detail the registers for the MAX77650/MAX77651. Undocumented register locations are reserved. Bits marked with "x" mean the reset value is determined by OTP. Refer to the OTP Registers Quick Reference Table for the reset values.

9.1 Register Descriptions: Global Resources

9.1.1 CNFG_GLBL

Register Name	CNFG_GLBL
I2C Slave Address	function of ADDR OTP bit
Register Address	0x10
Reset Value (HEX)	ОТР
Reset Value (BIN)	0b00x00x00
Reset Condition	SYSRST=1
Access Type	Mixed
Register Type	Configuration

Bit	Default	Bit Name	Description	Reset	Access Type
7	0	RESERVED	Reserved. Unutilized bit. Write to 0. Reads are don't care.	SYSRST=1	R/W
6	0	вок	Main Bias Okay Status Bit 0 = Main Bias not ready. 1 = Main Bias enabled and ready.	SYSRST=1	R
5	OTP	SBIA_LPM	Main Bias Low-Power Mode software request 0 = Main Bias requested to be in Normal Power Mode by software. 1 = Main Bias request to be in Low Power Mode by software.	SYSRST=1	R/W
4	0	SBIA_EN	Main Bias Enable Software Request 0 = Main Bias not enabled by software. Note that the main bias may be on via the on/off controller circuitry. 1 = Main Bias force enabled by software	SYSRST=1	R/W
3	0	nEN_MODE	nEN Input (ONKEY) Default Configuration Mode 0 = Push-Button Mode 1 = Slide-Switch Mode	SYSRST=1	R/W
2	OTP	DBEN_nEN	Debounce Timer Enable for the nEN Pin 0 = 100us Debounce 1 = 30ms Debounce	SYSRST=1	R/W

1	0	SFT_RST[1:0]	Software Reset Functions. See the "On/Off Controller" section of the datasheet for more information. 0b00 = No Action 0b01 = Software Cold Reset (SFT_CRST). The device powers down, resets, and the powers up again. 0b10 = Software Off (SFT_OFF). The device powers down, resets, and then remains off and waiting for a wakeup event. 0b11 = Reserved	SYSRST=1	R/W
0	0		Note that unlike most every other I2C write in this device that happens virtually immediately after the I2C acknowledge, the ST_CRST and SFT_OFF commands go through the power down sequence flow as described in the datasheet. This power down sequence flow has delay elements that add up to 205.24ms (60ms delay + 10.24ms nRST assert delay + 4x2.56ms power down slot delays + 125ms output discharge delay). If issuing the SFT_CRST and/or SFT_OFF functions in software, please wait for >300ms before trying to issue any additional commands via I2C.	SYSRST=1	R/W

9.1.2 INT_GLBL

Register Name	INT_GLBL
I2C Slave Address	function of ADDR OTP bit
Register Address	0x00
Reset Value (HEX)	0x00
Reset Value (BIN)	060000000
Reset Condition	SYSRST=1
Access Type	RC
Register Type	Interrupt

Bit	Default	Bit Name	Description	Reset	Access Type
7	0	RESERVED	Reserved. Unutilized bit. Write to 0. Reads are don't care.	SYSRST=1	RC
6	0	DOD_R	LDO Dropout Detector Rising Interrupt 0 = The LDO has not detected dropout since the last time this bit was read. 1 = The LDO has detected dropout since the last time this bit was read.	SYSRST=1	RC
5	0	TJAL2_R	Thermal Alarm 2 Rising Interrupt 0 = The junction temperature <u>has not</u> risen above TJAL2 since the last time this bit was read. 1 = The junction temperature <u>has</u> risen above TAJAL2 since the last time this bit was read.	SYSRST=1	RC
4	0	TJAL1_R	Thermal Alarm 1 Rising Interrupt 0 = The junction temperature <u>has not</u> risen above TJAL1 since the last time this bit was read. 1 = The junction temperature <u>has</u> risen above TAJAL1 since the last time this bit was read.	SYSRST=1	RC
3	0	nEN_R	nEN Rising Interrupt 0 = No nEN rising edges have occurred since the last time this bit was read. 1 = A nEN rising edge as occurred since the last time this bit was read.	SYSRST=1	RC
2	0	nEN_F	nEN Falling Interrupt 0 = No nEN falling edges have occurred since the last time this bit was read. 1 = A nEN falling edge as occurred since the last time this bit was read.	SYSRST=1	RC
1	0	GPI_R	GPI Rising Interrupt 0 = No GPI rising edges have occurred since the last time this bit was read. 1 = A GPI rising edge as occurred since the last time this bit was read. Note that the GPI is the GPIO programmed to be an input.	SYSRST=1	RC
0	0	GPI_F	GPI Falling Interrupt 0 = No GPI falling edges have occurred since the last time this bit was read. 1 = A GPI falling edge as occurred since the last time this bit was read. Note that the GPI is the GPIO programmed to be an input.	SYSRST=1	RC

9.1.3 INTM_GLBL

Register Name	INTM_GLBL
I2C Slave Address	function of ADDR OTP bit
Register Address	0x06
Reset Value (HEX)	0xFF
Reset Value (BIN)	0b1111111
Reset Condition	SYSRST=1
Access Type	R/W
Register Type	Interrupt Mask

Bit	Default	Bit Name	Description	Reset	Access Type
7	1	RESERVED	Reserved. Unutilized bit. Write to 0. Reads are don't care.	SYSRST=1	R/W
6	1	DOD_RM	LDO Dropout Detector Rising Interrupt Mask 0 = Unmasked. If DOD_R goes from 0 to 1, then nIRQ will go low. nIRQ will go high when all interrupt bits are cleared. 1 = Masked. nIRQ will not go low due to DOD_R.	SYSRST=1	R/W
5	1	TJAL2_RM	Thermal Alarm 2 Rising Interrupt Mask 0 = Unmasked. If TJAL2_R goes from 0 to 1, then nIRQ will go low. nIRQ will go high when all interrupt bits are cleared. 1 = Masked. nIRQ will not go low due to TJAL2_R.	SYSRST=1	R/W
4	1	TJAL1_RM	Thermal Alarm 1 Rising Interrupt Mask 0 = Unmasked. If TJAL1_R goes from 0 to 1, then nIRQ will go low. nIRQ will go high when all interrupt bits are cleared. 1 = Masked. nIRQ will not go low due to TJAL1_R.	SYSRST=1	R/W
3	1	nEN_RM	nEN Rising Interrupt Mask 0 = Unmasked. If nEN_R goes from 0 to 1, then nIRQ will go low. nIRQ will go high when all interrupt bits are cleared. 1 = Masked. nIRQ will not go low due to nEN_R.	SYSRST=1	R/W
2	1	nEN_FM	nEN Falling Interrupt Mask 0 = Unmasked. If nEN_F goes from 0 to 1, then nIRQ will go low. nIRQ will go high when all interrupt bits are cleared. 1 = Masked. nIRQ will not go low due to nEN_F.	SYSRST=1	R/W
1	1	gpi_rm	GPI Rising Interrupt Mask 0 = Unmasked. If GPI_R goes from 0 to 1, then nIRQ will go low. nIRQ will go high when all interrupt bits are cleared. 1 = Masked. nIRQ will not go low due to GPI_R.	SYSRST=1	R/W
0	1	GPI_FM	GPI Falling Interrupt Mask 0 = Unmasked. If FPI_F goes from 0 to 1, then nIRQ will go low. nIRQ will go high when all interrupt bits are cleared. 1 = Masked. nIRQ will not go low due to GPI_F.	SYSRST=1	R/W

9.1.4 STAT_GLBL

Register Name	STAT_GLBL
I2C Slave Address	function of ADDR OTP bit
Register Address	0x05
Reset Value (HEX)	ОТР
Reset Value (BIN)	0bxx000000
Reset Condition	SYSRST=1
Access Type	R
Register Type	Status

Bit	Default	Bit Name	Description	Reset
7	OTP		Device Identification Bits for Metal Options: 0b00 = MAX77650	SYSRST=1
6	OTP	DIDM[1:0]	0b01 = MAX77651 0b10 = Reserved for future use 0b11 = Reserved for future use	SYSRST=1
5	0	DOD_S	LDO Dropout Detector Rising Status 0 = The LDO is not in dropout 1 = The LDO is in dropout	SYSRST=1
4	0	TJAL2_S	Thermal Alarm 2 Status 0 = The junction temperature is less than TJA2 1 = The junction temperature is greater than TJAL2	SYSRST=1
3	0	TJAL1_S	Thermal Alarm 1 Status 0 = The junction temperature is less than TJAL1 1 = The junction temperature is greater than TJAL1	SYSRST=1
2	0	STAT_EN	Debounced Status for the nEN input. 0=nEN0 is not active (logic high) 1=nEN0 is active (logic low)	SYSRST=1
1	0	STAT_PWR_HLD	PWR_HLD Input De-bounced Status 0 = Logic Low 1 = Logic High	SYSRST=1
0	0	STAT_IRQ	Software Version of the nIRQ MOSFET gate drive. 0 = unmasked gate drive is logic low 1 = unmasked gate drive is logic high	SYSRST=1

9.1.5 ERCFLAG

Register Name	ERCFLAG
I2C Slave Address	function of ADDR OTP bit
Register Address	0x04
Reset Value (HEX)	0x00
Reset Value (BIN)	060000000
Reset Condition	POR=1
Access Type	RC
Register Type	Status

Bit	Default	Bit Name	Description	Reset	Access Type
7	0	RESERVED	Reserved. Unutilized bit. Write to 0. Reads are don't care.	POR=1	RC
6	0	PWR_HLD_RST	PWR_HLD Reset O= A Reset has not occurred due to PWR_HLD2 deassertion since this last read of this register. 1= A Reset has occurred due to PWR_HLD2 deassertion since this last read of this register.	POR=1	RC
5	0	SFT_CRST_F	Software Cold Reset Flag 0 = The software cold reset has not occurred since the last read of this register. 1 = The software cold reset has occurred since the last read of this register. This indicates that software has set SFT_RST=0b01.	POR=1	RC
4	0	SFT_OFF_F	Software Off Flag 0 = The SFT_OFF function has not occurred since the last read of this register. 1 = The SFT_OFF function has occurred since the last read of this register. This indicates that software has set SFT_RST=0b10.	POR=1	RC
3	0	MRST	Manual Reset Timer 0 = A Manual Reset has not occurred since this last read of this register. 1 = A Manual Reset has occurred since this last read of this register.	POR=1	RC
2	0	SYSUVLO	SYS Domain Undervoltage Lockout 0 = The SYS domain undervoltage lockout has not occurred since this last read of this register. 1 = The SYS domain undervoltage lockout has occurred since the last read of this register. This indicates that the SYS domain voltage fell below VSYSUVLO (~2.4V)	POR=1	RC
1	0	SYSOVLO	SYS Domain Overvoltage Lockout 0 = The SYS domain overvoltage lockout has not occurred since this last read of this register. 1 = The SYS domain overvoltage lockout has occurred since the last read of this register. This indicates that the SYS domain voltage rose below VSYSOVLO (~5.85V)	POR=1	RC
0	0	TOVLD	Thermal Overload 0 = The thermal overload has not occurred since the last read of this register. 1 = The thermal overload has occurred since the list read of this register. This indicates that the junction temperature has exceeded 165C.	POR=1	RC

9.1.6 CNFG_GPIO

Register Name	CNFG_GPIO
I2C Slave Address	function of ADDR OTP bit
Register Address	0x12
Reset Value (HEX)	0x01
Reset Value (BIN)	0b0000001
Reset Condition	SYSRST=1
Access Type	Mixed
Register Type	Mixed

Bit	Default	Bit Name	Desci	iption	Reset	Access Type
7	0	RESERVED	Reserved. Unutilized bit. Write to 0. Reads are don't care.		SYSRST=1	R/W
6	0	RESERVED	Reserved. Unutilized bit. Write to 0. Re	Reserved. Unutilized bit. Write to 0. Reads are don't care.		R/W
5	0	RESERVED	Reserved. Unutilized bit. Write to 0. Re	ads are don't care.	SYSRST=1	R/W
4	0	DBEN_GPI	General Purpose Input Debounce Timer Enable 0 = no debounce 1 = 30ms debounce		SYSRST=1	R/W
3	0	DO	General Purpose Output Data Output When set for GPO (DIR=0): 0 = GPIO is output is logic low 1 = GPIO is output logic high when set as push-pull output (DRV=1). GPIO is high-impedance when set as a and open-drain output (DRV=0).	When set for GPI (DIR=1): DO are don't care when GPI.	SYSRST=1	R/W
2	0	DRV	General Purpose Output Driver Type When set for GPO (DIR=0): 0=open-drain 1=Push-Pull	When set for GPI (DIR=1): DRVx is a don't care when GPI.	SYSRST=1	R/W
1	0	DI	GPIO Digital Input Value. Irrespective of whether the GPIO is set for GPI (DIR=1) or GPO (DIR=0), DI reflects the state of the GPIO. 0=input logic low 1=input logic high		SYSRST=1	R
0	1	DIR	GPIO Direction. 0=General purpose output (GPO) 1=General purpose input (GPI)		SYSRST=1	R/W

9.1.7 CID

Register Name	CID
I2C Slave Address	function of ADDR OTP bit
Register Address	0x11
Reset Value (HEX)	ОТР
Reset Value (BIN)	ObOxxxxxx
Reset Condition	PORB
Access Type	R
Register Type	Data

Bit	Default	Bit Name	Description	Reset	Access Type
7	0	RESERVED	Reserved. Unutilized bit. Write to 0. Reads are don't care.	PORB	R
6	ОТР		Sampling Clock Frequency. This 3-bit configuration is for Maxim internal use	PORB	R
5	ΟΤΡ	CLKS[2:0]	only and controls a clock divider to set the internal sampling frequency of the global resources. 0b011 = 160Hz 0b100 = 80Hz 0b101 = 40Hz 0b110 = 20Hz	PORB	R
4	ΟΤΡ		0b111 = 10Hz	PORB	R
3	OTP			PORB	R
2	OTP	CID[3:0]	Chip Identification Code. These bits track the OTP configuration. The value is	PORB	R
1	OTP		register corresponds to a set of reset values in the register map.	PORB	R
0	OTP			PORB	R

9.2 Register Descriptions: Charger

9.2.1 INT_CHG

Register Name	INT_CHG
I2C Slave Address	function of ADDR OTP bit
Register Address	0x01
Reset Value (HEX)	0x00
Reset Value (BIN)	0b0000000
Reset Condition	SYSRST=1
Access Type	RC
Register Type	Interrupt

Bit	Default	Bit Name	Description	Reset	Access Type
7	0	RESERVED	Reserved. Unutilized bit. Write to 0. Reads are don't care.	SYSRST=1	RC
6	0	SYS_CNFG_I	System voltage configuration error interrupt 0 = The bit combination in CHG_CV has not been forced to change since the last time this bit was read 1 = The bit combination in CHG_CV has been forced to change to ensure VSYS- REG = VFAST-CHG + 200mV since the last time this bit was read	SYSRST=1	RC
5	0	SYS_CTRL_I	Minimum System Voltage Regulation-loop related interrupt. This interrupt signals a change in the status bit VSYS_MIN_STAT. 0 = The minimum system voltage regulation loop has not engaged since the last time this bit was read 1 = The minimum system voltage regulation loop has engaged since the last time this bit was read	SYSRST=1	RC
4	0	CHGIN_CTRL_I	CHGIN control-loop related interrupt. This bit asserts when the input reaches current limit (ICHGIN-LIM) or VCHGIN falls below VCHGIN_MIN 0 = Neither the VCHGIN_MIN_STAT nor the ICHGIN_LIM_STAT bits have changed since the last time this bit was read 1 = The VCHGIN_MIN_STAT or ICHGIN_LIM_STAT bits have changed since the last time this bit was read	SYSRST=1	RC
3	0	TJ_REG_I	Die junction temperature regulation interrupt. This bit asserts when the die temperature (TJ) exceeds TJ-REG. This interrupt signals a change in the status bit TJ_REG_STAT. 0 = The die temperature has not exceeded TJ-REG since the last time this bit was read 1 = The die temperature has exceeded TJ-REG since the last time this bit was read	SYSRST=1	RC
2	0	CHGIN_I	CHGIN related interrupt 0 = The bits in CHGIN_DTLS have not changed since the last time this bit was read 1 = The bits in CHGIN_DTLS have changed since the last time this bit was read	SYSRST=1	RC
1	0	СНС_І	Charger related interrupt 0 = The bits in CHG_DTLS have not changed since the last time this bit was read 1 = The bits in CHG_DTLS have changed since the last time this bit was read	SYSRST=1	RC
0	0	THM_I	Thermistor related interrupt 0 = The bits in THM_DTLS have not changed since the last time this bit was read 1 = The bits in THM_DTLS have changed since the last time this bit was read	SYSRST=1	RC

9.2.2 INT_M_CHG

Register Name	INT_M_CHG
I2C Slave Address	function of ADDR OTP bit
Register Address	0x07
Reset Value (HEX)	0xFF
Reset Value (BIN)	0b1111111
Reset Condition	SYSRST=1
Access Type	R/W
Register Type	Interrupt Mask

Bit	Default	Bit Name	Description	Reset	Access Type
7	1	RESERVED	Reserved. Unutilized bit. Write to 0. Reads are don't care.	SYSRST=1	R/W
6	1	SYS_CNFG_M	Setting this bit prevents the SYS_CNFG_I bit from causing hardware IRQs 0 = SYS_CNFG_I is not masked 1 = SYS_CNFG_I is masked	SYSRST=1	R/W
5	1	SYS_CTRL_M	Setting this bit prevents the SYS_CTRL_I bit from causing hardware IRQs 0 = SYS_CTRL_I is not masked 1 = SYS_CTRL_I is masked	SYSRST=1	R/W
4	1	CHGIN_CTRL_M	Setting this bit prevents the CHGIN_CTRL_I bit from causing hardware IRQs 0 = CHGIN_CTRL_I is not masked 1 = CHGIN_CTRL_I is masked	SYSRST=1	R/W
3	1	TJ_REG_M	Setting this bit prevents the TJREG_I bit from causing hardware IRQs 0 = TJREG_I is not masked 1 = TJREG_I is masked	SYSRST=1	R/W
2	1	CHGIN_M	Setting this bit prevents the CHGIN_I bit from causing hardware IRQs 0 = CHGIN_I is not masked 1 = CHGIN_I is masked	SYSRST=1	R/W
1	1	CHG_M	Setting this bit prevents the CHG_I bit from causing hardware IRQs 0 = CHG_I is not masked 1 = CHG_I is masked	SYSRST=1	R/W
0	1	THM_M	Setting this bit prevents the THM_I bit from causing hardware IRQs 0 = THM_I is not masked 1 = THM_I is masked	SYSRST=1	R/W

9.2.3 STAT_CHG_A

Register Name	STAT_CHG_A
I2C Slave Address	function of ADDR OTP bit
Register Address	0x02
Reset Value (HEX)	0x00
Reset Value (BIN)	0b0000000
Reset Condition	СНБРОК
Access Type	R
Register Type	Status

Bit	Default	Bit Name	Description	Reset	Access Type
7	0	RESERVED	Reserved. Unutilized bit. Write to 0. Reads are don't care.	CHGPOK	R
6	0	VCHGIN_MIN_STAT	Minimum Input Voltage Regulation Loop Status 0 = The minimum CHGIN voltage regulation loop is not engaged 1 = The minimum CHGIN voltage regulation loop has engaged to regulate VCHGIN >= VCHGIN-MIN	СНБРОК	R
5	0	ICHGIN_LIM_STAT	Input Current Limit Loop Status 0 = The CHGIN current limit loop is not engaged 1 = The CHGIN current limit loop has engaged to regulate ICHGIN <= ICHGIN-LIM	СНБРОК	R
4	0	VSYS_MIN_STAT	Minimum System Voltage Regulation Loop Status 0 = The minimum system voltage regulation loop is not engaged 1 = The minimum system voltage regulation loop is engaged to regulate VSYS >= VSYS-MIN	СНБРОК	R
3	0	TJ_REG_STAT	Maximum Junction Temperature Regulation Loop Status 0 = The maximum junction temperature regulation loop is not engaged 1 = The maximum junction temperature regulation loop has engaged to regulate the junction temperature less than TJ-REG	СНБРОК	R
2	0		Battery Temperature Details (Valid Only when CHGIN_DTLS[1:0] = 0b11) 0b000 = Thermistor is disabled (THM_EN = 0) 0b001 = Battery is cold as programmed by THM_COLD[1:0] If thermistor	СНБРОК	R
1	0	THM_DTLS[2:0]	and charger are enabled while the battery is cold, a battery temperature fault will occur. 0b010 = Battery is cool as programmed by THM_COOL[1:0] 0b011 = Battery is warm as programed by THM_WARM[1:0] 0b100 = Battery is hot as programmed by THM_HOT[1:0]. If thermistor	СНБРОК	R
0	0		and charger are enabled while the battery is hot, a battery temperature fault will occur. 0b101 = Battery is in the normal temperature region as programmed by the THM_CONTROL register 0b110-0b111 = reserved	СНБРОК	R

9.2.4 STAT_CHG_B

Register Name	STAT_CHG_B
I2C Slave Address	function of ADDR OTP bit
Register Address	0x03
Reset Value (HEX)	0x00
Reset Value (BIN)	060000000
Reset Condition	СНБРОК
Access Type	R
Register Type	Status

Bit	Default	Bit Name	Description	Reset	Access Type
7	0		Charger Details 0b0000 = Charger is off (CHG_EN = 0 or charger input is invalid or battery is not low by Vrestart)	СНБРОК	R
6	0	CHG DTLS[3:0]	0b0001 = Charger is in prequalification mode 0b0010 = Charger is in fast-charge constant-current (CC) mode 0b0011 = Charger is in JEITA modified fast-charge constant-current mode 0b0100 = Charger is in fast-charge constant-voltage (CV) mode 0b0101 = Charger is in JEITA modified fast-charge constant-voltage mode	СНБРОК	R
5	0		0b0110 = Charger is in top-off mode 0b0111 = Charger is in JEITA modified top-off mode 0b1000 = Charger is done 0b1001 = Charger is JEITA modified done (done was entered through the JEITA-modified fast-charge states) 0b1010 = Charger is suspended due to a prequalification timer fault	СНБРОК	R
4	0		Ob1011 = Charger is suspended due to a fast-charge timer fault Ob1100 = Charger is suspended due to a battery temperature fault Ob1101-Ob1111 = reserved	СНБРОК	R
3	0		CHGIN Status Details 0b00 = The CHGIN input voltage is below the UVLO threshold (VCHGIN < VUVLO) 0b01 = The CHGIN input voltage is above the OVP threshold (VCHGIN >	СНБРОК	R
2	0	CHGIN_DTLS[1:0]	VOVP) 0b10 = The CHGIN input is being debounced (no power accepted from CHGIN during debounce) 0b11 = The CHGIN input is okay and debounced	СНБРОК	R
1	0	Quick Charger Status CHG 0 = Charging is not happening 1 = Charging is happening		СНБРОК	R
0	0	TIME_SUS	Time Suspend Indicator 0 = The charger's timers are either not active, or not suspended 1 = The charger's active timer is suspended due to one of three reasons: the charge current has dropped below 20% of IFAST-CHG while the charger state machine is in FAST CHARGE CC mode, the charger is in SUPPLIMENT mode, or the charger state machine is in BATTERY TEMPERATURE FAULT mode.	СНБРОК	R

9.2.5 CNFG_CHG_A

Register Name	CNFG_CHG_A
I2C Slave Address	function of ADDR OTP bit
Register Address	0x18
Reset Value (HEX)	0x0F
Reset Value (BIN)	0b00001111
Reset Condition	SYSRST=1
Access Type	R/W
Register Type	Configuration

Bit	Default	Bit Name	Description	Reset	Access Type
7	0		Sets the VHOT JEITA Temperature Threshold $0b00 = VHOT = 0.411V (45^{\circ}C \text{ for } \beta = 3380K)$ $0b01 = VHOT = 0.367V (50^{\circ}C \text{ for } \beta = 3380K)$	SYSRST=1	R/W
6	0	THM_HOT[1:0]	0b11 = VHOT = 0.367V (50 C for β = 3380K) 0b10 = VHOT = 0.327V (55°C for β = 3380K) 0b11 = VHOT = 0.291V (60°C for β = 3380K)	SYSRST=1	R/W
5	0		Sets the VWARM JEITA Temperature Threshold $0b00 = VWARM = 0.511V (35^{\circ}C \text{ for } \beta = 3380K)$ $0b01 = VWARM = 0.459V (40^{\circ}C \text{ for } \beta = 3380K)$	SYSRST=1	R/W
4	0		HM_WARM[1:0] 0b01 = VWARM = 0.459V (40°C for β = 3380K) 0b10 = VWARM = 0.411V (45°C for β = 3380K) 0b11 = VWARM = 0.367V (50°C for β = 3380K)	SYSRST=1	R/W
3	1		Sets the VCOOL JEITA Temperature Threshold $0b00 = VCOOL = 0.923V$ (0°C for $\beta = 3380K$) $0b01 = VCOOL = 0.867V$ (5°C for $\beta = 3380K$)	SYSRST=1	R/W
2	1	THM_COOL[1:0]	0b11 = VCOOL = 0.807V (5 C for β = 3380K) 0b10 = VCOOL = 0.807V (10°C for β = 3380K) 0b11 = VCOOL = 0.747V (15°C for β = 3380K)	SYSRST=1	R/W
1	1	THM_COLD[1:0]	Sets the VCOLD JEITA Temperature Threshold $0b00 = VCOLD = 1.024V (-10^{\circ}C \text{ for } \beta = 3380K)$ $0b01 = VCOLD = 0.976V (-5^{\circ}C \text{ for } \beta = 3380K)$	SYSRST=1	R/W
0	1		0b10 = VCOLD = 0.978V (*3 C for β = 3380K) 0b10 = VCOLD = 0.923V (0°C for β = 3380K) 0b11 = VCOLD = 0.867V (5°C for β = 3380K)	SYSRST=1	R/W

9.2.6 CNFG_CHG_B

Register Name	CNFG_CHG_B
I2C Slave Address	function of ADDR OTP bit
Register Address	0x19
Reset Value (HEX)	ОТР
Reset Value (BIN)	0b000000x
Reset Condition	Mixed
Access Type	R/W
Register Type	Configuration

Bit	Default	Bit Name	Description			Reset	Access Type	
7	0		Minimum CHGIN	V regulation voltage	(V _{CHGIN-MIN})		SYSRST=1	R/W
6	0	VCHGIN_MIN[2:0]	0b000 = 4.0V	0b010 = 4.2V	0b100 = 4.4V	0b110 = 4.6V	SYSRST=1	R/W
5	0		0b001 = 4.1V	0b011 = 4.3V	0b101 = 4.5V	0b111 = 4.7V	SYSRST=1	R/W
4	0		CHGIN Input Cu	rrent Limit (I _{CHGIN-LIM})			СНБРОК	R/W
3	0	ICHGIN_LIM[2:0]	When ICHGIN_L 0b000 = 95mA 0b001 = 190mA 0b010 = 285mA 0b011 = 380mA	0b001 = 190mA 0b010 = 285mA 0b011 = 380mA 0b100 = 475mA 0b101 to 0b111 = Reserved values that result in 475mA. If 475mA is desired, please use the 0b100		When ICHGIN_LIM_DEF=1: 0b000 = 475mA 0b001 to 0b011 = Reserved values that result in 475mA. If 475mA is desired, please use the 0b000 setting.		R/W
2	0		that result in 47			b100 = 95mA b101 to 0b111 = Reserved values hat results in 95mA. If 95mA is lesired, please use the 0b100 etting.	СНБРОК	R/W
1	0	I_PQ	Sets the prequalification charge current (IPQ) as a percentage of IFAST- CHG 0 = 10% 1 = 20%		SYSRST=1	R/W		
0	ΟΤΡ	CHG_EN				SYSRST=1	R/W	

9.2.7 CNFG_CHG_C

Register Name	CNFG_CHG_C
I2C Slave Address	function of ADDR OTP bit
Register Address	0x1A
Reset Value (HEX)	0xF8
Reset Value (BIN)	0b11111000
Reset Condition	SYSRST=1
Access Type	R/W
Register Type	Configuration

Bit	Default	Bit Name		Description			Reset	Access Type
7	1		Battery prequali	Battery prequalification voltage threshold (V_{PQ})			SYSRST=1	R/W
6	1	CHG_PQ[2:0]	0b000 = 2.3V	0b010 = 2.5V	0b100 = 2.7V	0b110 = 2.9V	SYSRST=1	R/W
5	1		0b001 = 2.4V	0b011 = 2.6V	0b101 = 2.8V	0b111 = 3.0V	SYSRST=1	R/W
4	1			Charger Termination Current (I_{TERM}). I_TERM[1:0] sets the charger termination current as a percentage of the fast charge current $I_{FAST-CHG}$. 00 = 5%				R/W
3	1	I_TERM[1:0] 01 = 7.5% 10 = 10% 11 = 15%					SYSRST=1	R/W
2	0		Topoff timer val	Topoff timer value (t_{TO})			SYSRST=1	R/W
1	0	T_TOPOFF[2:0]	0b000 = 0 minutes	0b010 = 10 minutes	0b100 = 20 minutes	0b110 = 30 minutes	SYSRST=1	R/W
0	0		0b001 = 5 minutes	0b011 = 15 minutes	0b101 = 25 minutes	0b111 = 35 minutes	SYSRST=1	R/W

9.2.8 CNFG_CHG_D

Register Name	CNFG_CHG_D
I2C Slave Address	function of ADDR OTP bit
Register Address	0x1B
Reset Value (HEX)	0x10
Reset Value (BIN)	0b00010000
Reset Condition	SYSRST=1
Access Type	R/W
Register Type	Configuration

Bit	Default	Bit Name	Description	Reset	Access Type
7	0		Sets the die junction temperature regulation point, $T_{\mbox{\tiny J-REG}}$	SYSRST=1	R/W
6	0	TJ_REG[2:0]	0b000 = 60°C 0b010 = 80°C 0b100 = 100°C 0b110 = 100°C	SYSRST=1	R/W
5	0		0b001 = 70°C 0b011 = 90°C 0b101 = 100°C 0b111 = 100°C	SYSRST=1	R/W
4	1		System voltage regulation (V _{SYS-REG})	SYSRST=1	R/W
3	0		This 5-bit configuration is a linear transfer function that starts at 4.1V and	SYSRST=1	R/W
2	0	VSYS_REG[4:0]	ends at 4.8V, with 25mV increments. See the "VSYS_REG Code Table" for a complete table of values. Program VSYS REG to at least 200mV above the	SYSRST=1	R/W
1	0	ł	higher of CHG_CV and CHG_CV_JEITA. See the <i>Managing VSYS_REG, CHG_CV</i> ,	SYSRST=1	R/W
0	0		and CHG_CV_JEITA section of the Programmer's Guide for more information.	SYSRST=1	R/W

9.2.9 VSYS_REG Code Table

0x00=0b00000=4.100V	0x10=0b10000=4.500V
0x01=0b00001=4.125V	0x11=0b10001=4.525V
0x02=0b00010=4.150V	0x12=0b10010=4.550V
0x03=0b00011=4.175V	0x13=0b10011=4.575V
0x04=0b00100=4.200V	0x14=0b10100=4.600V
0x05=0b00101=4.225V	0x15=0b10101=4.625V
0x06=0b00110=4.250V	0x16=0b10110=4.650V
0x07=0b00111=4.275V	0x17=0b10111=4.675V
0x08=0b01000=4.300V	0x18=0b11000=4.700V
0x09=0b01001=4.325V	0x19=0b11001=4.725V
0x0A=0b01010=4.350V	0x1A=0b11010=4.750V
0x0B=0b01011=4.375V	0x1B=0b11011=4.775V
0x0C=0b01100=4.400V	0x1C=0b11100=4.800V
0x0D=0b01101=4.425V	0x1D=0b11101=4.800V
0x0E=0b01110=4.450V	0x1E=0b11110=4.800V
0x0F=0b01111=4.475V	0x1F=0b11111=4.800V

See the *Managing VSYS_REG, CHG_CV, and CHG_CV_JEITA* section of the Programmer's Guide for more information.

9.2.10 CNFG_CHG_E

Register Name	CNFG_CHG_E
I2C Slave Address	function of ADDR OTP bit
Register Address	0x1C
Reset Value (HEX)	0x05
Reset Value (BIN)	0b0000101
Reset Condition	SYSRST=1
Access Type	R/W
Register Type	Configuration

Bit	Default	Bit Name	Description	Reset	Access Type
7	0		Sets the fast-charge constant current value, I _{FAST-CHG} . This 6-bit configuration is a linear transfer function that starts at 7.5mA and ends at 300mA, with 7.5mA increments. See the "CHG_CC Code Table" for a complete table of values.	SYSRST=1	R/W
6	0			SYSRST=1	R/W
5	0			SYSRST=1	R/W
4	0	CHG_CC[5:0]		SYSRST=1	R/W
3	0			SYSRST=1	R/W
2	1			SYSRST=1	R/W
1	0	T_FAST_CHG[1:0]	Sets the fast-charge safety timer, t _{FC} . 0b00 = timer disabled 0b01 = 2 hours	SYSRST=1	R/W
0	1		0b01 = 3 hours 0b10 = 5 hours 0b11 = 7 hours	SYSRST=1	R/W

9.2.11 CHG_CC and CHG_CC_JEITA Code Table

0x00=0b000000=7.5mA	0x10=0b010000=127.5mA	0x20=0b100000=247.5mA	0x30=0b110000=300.0mA
0x01=0b000001=15.0mA	0x11=0b010001=135.0mA	0x21=0b100001=255.0mA	0x31=0b110001=300.0mA
0x02=0b000010=22.5mA	0x12=0b010010=142.5mA	0x22=0b100010=262.5mA	0x32=0b110010=300.0mA
0x03=0b000011=30.0mA	0x13=0b010011=150.0mA	0x23=0b100011=270.0mA	0x33=0b110011=300.0mA
0x04=0b000100=37.5mA	0x14=0b010100=157.5mA	0x24=0b100100=277.5mA	0x34=0b110100=300.0mA
0x05=0b000101=45.0mA	0x15=0b010101=165.0mA	0x25=0b100101=285.0mA	0x35=0b110101=300.0mA
0x06=0b000110=52.5mA	0x16=0b010110=172.5mA	0x26=0b100110=292.5mA	0x36=0b110110=300.0mA
0x07=0b000111=60.0mA	0x17=0b010111=180.0mA	0x27=0b100111=300.0mA	0x37=0b110111=300.0mA
0x08=0b001000=67.5mA	0x18=0b011000=187.5mA	0x28=0b101000=300.0mA	0x38=0b111000=300.0mA
0x09=0b001001=75.0mA	0x19=0b011001=195.0mA	0x29=0b101001=300.0mA	0x39=0b111001=300.0mA
0x0A=0b001010=82.5mA	0x1A=0b011010=202.5mA	0x2A=0b101010=300.0mA	0x3A=0b111010=300.0mA
0x0B=0b001011=90.0mA	0x1B=0b011011=210.0mA	0x2B=0b101011=300.0mA	0x3B=0b111011=300.0mA
0x0C=0b001100=97.5mA	0x1C=0b011100=217.5mA	0x2C=0b101100=300.0mA	0x3C=0b111100=300.0mA
0x0D=0b001101=105.0mA	0x1D=0b011101=225.0mA	0x2D=0b101101=300.0mA	0x3D=0b111101=300.0mA
0x0E=0b001110=112.5mA	0x1E=0b011110=232.5mA	0x2E=0b101110=300.0mA	0x3E=0b111110=300.0mA
0x0F=0b001111=120.0mA	0x1F=0b011111=240.0mA	0x2F=0b101111=300.0mA	0x3F=0b111111=300.0mA

9.2.12 CNFG_CHG_F

Register Name	CNFG_CHG_F
I2C Slave Address	function of ADDR OTP bit
Register Address	0x1D
Reset Value (HEX)	0x04
Reset Value (BIN)	0b0000100
Reset Condition	SYSRST=1
Access Type	R/W
Register Type	Configuration

Bit	Default	Bit Name	Description	Reset	Access Type
7	0		SYSRST=1	R/W	
6	0		Sets I _{FAST-CHG_JEITA} for when the battery is either cool or warm as defined by the TCOOL and TWARM temperature thresholds. This register is a don't care if the battery temperature is normal.	SYSRST=1	R/W
5	0			SYSRST=1	R/W
4	0	CHG_CC_JEITA[5:0]	This 6-bit configuration is a linear transfer function that starts at 7.5mA and	SYSRST=1	R/W
3	0		ends at 300mA, with 7.5mA increments. See the "CHG_CC Code Table" for a complete table of values.	SYSRST=1	R/W
2	1			SYSRST=1	R/W
1	0	THM_EN	Thermistor enable bit 0 = The charger does not enable the thermistor bias and battery temperature is ignored by charger logic 1 = The charger enables the thermistor and continuously monitors battery temperature	SYSRST=1	R/W
0	0	RESERVED	Reserved. This bit is reserved. Writes to this bit should be 0.	SYSRST=1	R/W

9.2.13 CNFG_CHG_G

Register Name	CNFG_CHG_G
I2C Slave Address	function of ADDR OTP bit
Register Address	Ox1E
Reset Value (HEX)	0x00
Reset Value (BIN)	060000000
Reset Condition	Mixed
Access Type	R/W
Register Type	Configuration

Bit	Default	Bit Name	Description	Reset	R/W
7	0		Sets fast-charge battery regulation voltage, V _{FAST-CHG} . This 6-bit configuration is a linear transfer function that starts at 3.6V and ends at 4.6V, with 25mV increments. See the "CHG CV Code Table" for a complete	SYSRST=1	R/W
6	0			SYSRST=1	R/W
5	0			SYSRST=1	R/W
4	0	CHG_CV[5:0]	table of values. Program VSYS_REG to at least 200mV above the higher of CHG CV and CHG CV JEITA. See the <i>Managing VSYS REG, CHG CV, and</i>	SYSRST=1	R/W
3	0		CHG_CV_JEITA section of the Programmer's Guide for more information.	SYSRST=1	R/W
2	0			SYSRST=1	R/W
1	0	USBS	Setting this bit places CHGIN in USB suspend mode 0 = CHGIN is not suspended and may draw current from an adapter source 1 = CHGIN is suspended and may draw no current from an adapter source Note: USBS=1 results in CHGIN_I interrupt AND CHGIN_DTLS=0b00	CHGPOR=1	R/W
0	0	RESERVED	Reserved. Unutilized bit. Write to 0. Reads are don't care.	CHGPOR=1	R/W

9.2.14 CHG_CV and CHG_CV_JEITA Code Table

0x00=0b000000=3.600V	0x10=0b010000=4.000V	0x20=0b100000=4.400V	0x30=0b110000=4.600V
0x01=0b000001=3.625V	0x11=0b010001=4.025V	0x21=0b100001=4.425V	0x31=0b110001=4.600V
0x02=0b000010=3.650V	0x12=0b010010=4.050V	0x22=0b100010=4.450V	0x32=0b110010=4.600V
0x03=0b000011=3.675V	0x13=0b010011=4.075V	0x23=0b100011=4.475V	0x33=0b110011=4.600V
0x04=0b000100=3.700V	0x14=0b010100=4.100V	0x24=0b100100=4.500V	0x34=0b110100=4.600V
0x05=0b000101=3.725V	0x15=0b010101=4.125V	0x25=0b100101=4.525V	0x35=0b110101=4.600V
0x06=0b000110=3.750V	0x16=0b010110=4.150V	0x26=0b100110=4.550V	0x36=0b110110=4.600V
0x07=0b000111=3.775V	0x17=0b010111=4.175V	0x27=0b100111=4.575V	0x37=0b110111=4.600V
0x08=0b001000=3.800V	0x18=0b011000=4.200V	0x28=0b101000=4.600V	0x38=0b111000=4.600V
0x09=0b001001=3.825V	0x19=0b011001=4.225V	0x29=0b101001=4.600V	0x39=0b111001=4.600V
0x0A=0b001010=3.850V	0x1A=0b011010=4.250V	0x2A=0b101010=4.600V	0x3A=0b111010=4.600V
0x0B=0b001011=3.875V	0x1B=0b011011=4.275V	0x2B=0b101011=4.600V	0x3B=0b111011=4.600V
0x0C=0b001100=3.900V	0x1C=0b011100=4.300V	0x2C=0b101100=4.600V	0x3C=0b111100=4.600V
0x0D=0b001101=3.925V	0x1D=0b011101=4.325V	0x2D=0b101101=4.600V	0x3D=0b111101=4.600V
0x0E=0b001110=3.950V	0x1E=0b011110=4.350V	0x2E=0b101110=4.600V	0x3E=0b111110=4.600V
0x0F=0b001111=3.975V	0x1F=0b011111=4.375V	0x2F=0b101111=4.600V	0x3F=0b111111=4.600V

See the *Managing VSYS_REG, CHG_CV, and CHG_CV_JEITA* section of the Programmer's Guide for more information.

9.2.15 CNFG_CHG_H

Register Name	CNFG_CHG_H
I2C Slave Address	function of ADDR OTP bit
Register Address	0x1F
Reset Value (HEX)	0x00
Reset Value (BIN)	060000000
Reset Condition	SYSRST=1
Access Type	R/W
Register Type	Configuration

Bit	Default	Bit Name	Description	Reset	Access Type
7	0		Sets the modified V _{FAST-CHG} for when the battery is either cool or warm as defined by the TCOOL and TWARM temperature thresholds. This register is a	SYSRST=1	R/W
6	0		don't care if the battery temperature is normal.	SYSRST=1	R/W
5	0		This 6-bit configuration is a linear transfer function that starts at 3.6V and ends at 4.6V, with 25mV increments. See the "CHG CV Code Table" for a	SYSRST=1	R/W
4	0	CHG_CV_JEITA[5:0]	cHG_CV_JETA[50] ends at 4.6V, with 25mV increments, see the CHG_CV Code Table for a complete table of values.	SYSRST=1	R/W
3	0		Program VSYS_REG to at least 200mV above the higher of CHG_CV and	SYSRST=1	R/W
2	0		CHG_CV_JEITA. See the <i>Managing VSYS_REG, CHG_CV, and CHG_CV_JEITA</i> section of the Programmer's Guide for more information.	SYSRST=1	R/W
1	0	RESERVED	Reserved. Unutilized bit. Write to 0. Reads are don't care.	SYSRST=1	R/W
0	0	RESERVED	Reserved. Unutilized bit. Write to 0. Reads are don't care.	SYSRST=1	R/W

9.2.16 CNFG_CHG_I

Register Name	CNFG_CHG_I
I2C Slave Address	function of ADDR OTP bit
Register Address	0x20
Reset Value (HEX)	0xF0
Reset Value (BIN)	0b11110000
Reset Condition	SYSRST=1
Access Type	R/W
Register Type	Configuration

Bit	Default	Bit Name	Description	Reset	Access Type
7	1			SYSRST=1	R/W
6	1		Selects the battery discharge current full-scale current value This 4-bit configuration starts at 7.5mA and ends at 300mA. See the "IMON_DISCHG_SCALE Code Table" for a complete table of values.	SYSRST=1	R/W
5	1	IMON_DISCHG_SCALE[3:0]		SYSRST=1	R/W
4	1			SYSRST=1	R/W
3	0	MUX_SEL[3:0]	Selects the analog channel to connect to AMUX: : Note that for the AMUX to operate the on/off controller must be in either its "On via Software" or "On via On/Off Controller" state. Ob0000 = Multiplexer is disabled and AMUX is high-impedance.	SYSRST=1	R/W
2	0		0b0001 = CHGIN voltage monitor. 0b0010 = CHGIN current monitor. 0b0011 = BATT voltage monitor. 0b0100 = BATT charge current monitor. Valid only while battery charging is happening (CHG = 1).	SYSRST=1	R/W
1	0		0b0101 = BATT discharge current monitor normal measurement. 0b0110 = BATT discharge current monitor nulling measurement. 0b0111 = THM voltage monitor 0b1000 = TBIAS voltage monitor 0b1001 = AGND voltage monitor (through 100Ω pull-down resistor) 0b1010-0b1111 = SYS voltage monitor	SYSRST=1	R/W
0	0		Note that the multiplexer consumes current unless it is in the 0b0000 state. When measurements are not needed, make sure to configure MUX_SEL[3:0] = 0b0000.	SYSRST=1	R/W

9.2.17 IMON_DISCHG_SCALE Code Table

0x00=0b0000=8.2mA	0x08=0b1000=251.2mA
0x01=0b0001=40.5mA	0x09=0b1001=279.3mA
0x02=0b0010=72.3mA	0x0A=0b1010=300.0mA
0x03=0b0011=103.4mA	0x0B=0b1011=300.0mA
0x04=0b0100=134.1mA	0x0C=0b1100=300.0mA
0x05=0b0101=164.1mA	0x0D=0b1101=300.0mA
0x06=0b0110=193.7mA	0x0E=0b1110=300.0mA
0x07=0b0111=222.7mA	0x0F=0b1111=300.0mA

9.3 Register Descriptions: LDO

9.3.1 CNFG_LDO_A

Register Name	CNFG_LDO_A
I2C Slave Address	function of ADDR OTP bit
Register Address	0x38
Reset Value (HEX)	ОТР
Reset Value (BIN)	Obxxxxxxx
Reset Condition	SYSRST=1
Access Type	R/W
Register Type	Configuration

Bit	Default	Bit Name	Description	Reset	Access Type
7	OTP	RESERVED	Reserved. Unutilized bit. Write to 0. Reads are don't care.	SYSRST=1	R/W
6	OTP		SYSRST=1	R/W	
5	OTP		LDO Target Output Voltage This 7-bit configuration is a linear transfer function that starts at 1.35V and ends at 2.9375V, with 12.5mV increments. See the "TV_LDO Code Table" section in this document for a complete table of values.	SYSRST=1	R/W
4	OTP	TV_LDO[6:0]		SYSRST=1	R/W
3	OTP			SYSRST=1	R/W
2	OTP			SYSRST=1	R/W
1	OTP			SYSRST=1	R/W
0	OTP			SYSRST=1	R/W

9.3.2 TV_LDO Code Table

0x00=0b0000000=1.3500V	0x20=0b0100000=1.7500V	0x40=0b1000000=2.1500V	0x60=0b1100000=2.5500V
0x01=0b0000001=1.3625V	0x21=0b0100001=1.7625V	0x41=0b1000001=2.1625V	0x61=0b1100001=2.5625V
0x02=0b0000010=1.3750V	0x22=0b0100010=1.7750V	0x42=0b1000010=2.1750V	0x62=0b1100010=2.5750V
0x03=0b0000011=1.3875V	0x23=0b0100011=1.7875V	0x43=0b1000011=2.1875V	0x63=0b1100011=2.5875V
0x04=0b0000100=1.4000V	0x24=0b0100100=1.8000V	0x44=0b1000100=2.2000V	0x64=0b1100100=2.6000V
0x05=0b0000101=1.4125V	0x25=0b0100101=1.8125V	0x45=0b1000101=2.2125V	0x65=0b1100101=2.6125V
0x06=0b0000110=1.4250V	0x26=0b0100110=1.8250V	0x46=0b1000110=2.2250V	0x66=0b1100110=2.6250V
0x07=0b0000111=1.4375V	0x27=0b0100111=1.8375V	0x47=0b1000111=2.2375V	0x67=0b1100111=2.6375V
0x08=0b0001000=1.4500V	0x28=0b0101000=1.8500V	0x48=0b1001000=2.2500V	0x68=0b1101000=2.6500V
0x09=0b0001001=1.4625V	0x29=0b0101001=1.8625V	0x49=0b1001001=2.2625V	0x69=0b1101001=2.6625V
0x0A=0b0001010=1.4750V	0x2A=0b0101010=1.8750V	0x4A=0b1001010=2.2750V	0x6A=0b1101010=2.6750V
0x0B=0b0001011=1.4875V	0x2B=0b0101011=1.8875V	0x4B=0b1001011=2.2875V	0x6B=0b1101011=2.6875V
0x0C=0b0001100=1.5000V	0x2C=0b0101100=1.9000V	0x4C=0b1001100=2.3000V	0x6C=0b1101100=2.7000V
0x0D=0b0001101=1.5125V	0x2D=0b0101101=1.9125V	0x4D=0b1001101=2.3125V	0x6D=0b1101101=2.7125V
0x0E=0b0001110=1.5250V	0x2E=0b0101110=1.9250V	0x4E=0b1001110=2.3250V	0x6E=0b1101110=2.7250V
0x0F=0b0001111=1.5375V	0x2F=0b0101111=1.9375V	0x4F=0b1001111=2.3375V	0x6F=0b1101111=2.7375V
0x10=0b0010000=1.5500V	0x30=0b0110000=1.9500V	0x50=0b1010000=2.3500V	0x70=0b1110000=2.7500V
0x11=0b0010001=1.5625V	0x31=0b0110001=1.9625V	0x51=0b1010001=2.3625V	0x71=0b1110001=2.7625V
0x12=0b0010010=1.5750V	0x32=0b0110010=1.9750V	0x52=0b1010010=2.3750V	0x72=0b1110010=2.7750V
0x13=0b0010011=1.5875V	0x33=0b0110011=1.9875V	0x53=0b1010011=2.3875V	0x73=0b1110011=2.7875V
0x14=0b0010100=1.6000V	0x34=0b0110100=2.0000V	0x54=0b1010100=2.4000V	0x74=0b1110100=2.8000V
0x15=0b0010101=1.6125V	0x35=0b0110101=2.0125V	0x55=0b1010101=2.4125V	0x75=0b1110101=2.8125V
0x16=0b0010110=1.6250V	0x36=0b0110110=2.0250V	0x56=0b1010110=2.4250V	0x76=0b1110110=2.8250V
0x17=0b0010111=1.6375V	0x37=0b0110111=2.0375V	0x57=0b1010111=2.4375V	0x77=0b1110111=2.8375V
0x18=0b0011000=1.6500V	0x38=0b0111000=2.0500V	0x58=0b1011000=2.4500V	0x78=0b1111000=2.8500V
0x19=0b0011001=1.6625V	0x39=0b0111001=2.0625V	0x59=0b1011001=2.4625V	0x79=0b1111001=2.8625V
0x1A=0b0011010=1.6750V	0x3A=0b0111010=2.0750V	0x5A=0b1011010=2.4750V	0x7A=0b1111010=2.8750V
0x1B=0b0011011=1.6875V	0x3B=0b0111011=2.0875V	0x5B=0b1011011=2.4875V	0x7B=0b1111011=2.8875V
0x1C=0b0011100=1.7000V	0x3C=0b0111100=2.1000V	0x5C=0b1011100=2.5000V	0x7C=0b1111100=2.9000V
0x1D=0b0011101=1.7125V	0x3D=0b0111101=2.1125V	0x5D=0b1011101=2.5125V	0x7D=0b1111101=2.9125V
0x1E=0b0011110=1.7250V	0x3E=0b0111110=2.1250V	0x5E=0b1011110=2.5250V	0x7E=0b1111110=2.9250V
0x1F=0b0011111=1.7375V	0x3F=0b0111111=2.1375V	0x5F=0b1011111=2.5375V	0x7F=0b1111111=2.9375V

9.3.3 CNFG_LDO_B

Register Name	CNFG_LDO_B
I2C Slave Address	function of ADDR OTP bit
Register Address	0x39
Reset Value (HEX)	ОТР
Reset Value (BIN)	0b0000xxxx
Reset Condition	SYSRST=1
Access Type	R/W
Register Type	Configuration

Bit	Default	Bit Name	Description	Reset	Access Type
7	0	BLANK	Blank. There is no bit at this location. Write to 0. Reads are don't care.	SYSRST=1	R/W
6	0	BLANK	Blank. There is no bit at this location. Write to 0. Reads are don't care.	SYSRST=1	R/W
5	0	BLANK	Blank. There is no bit at this location. Write to 0. Reads are don't care.	SYSRST=1	R/W
4	0	BLANK	Blank. There is no bit at this location. Write to 0. Reads are don't care.	SYSRST=1	R/W
3	ОТР	ADE_LDO	LDO active-Discharge Enable 0=The active discharge function is disabled. When LDO is disabled, it's discharge rate is a function of the output capacitance and the external load. 1=The active discharge function is enabled. When LDO is disabled, an internal resistor (R_{AD_LDO}) is activated from LDO to GND to help the output voltage discharge. The output voltage discharge rate is a function of the output capacitance, the external loading, and the internal R_{AD_LDO} load.	SYSRST=1	R/W
2	ΟΤΡ	EN_LDO[2:0]	Enable Control for LDO. 0b000 = LDO powers-up and powers-down in FPS slot 0 0b001 = LDO powers-up and powers-down in FPS slot 1	SYSRST=1	R/W
1	ΟΤΡ		0b010 = LDO powers-up and powers-down in FPS slot 2 0b011 = LDO powers-up and powers-down in FPS slot 3	SYSRST=1	R/W
0	OTP		0b110 = LDO is on irrespective of FPS whenever the on/off controller is in its "On via Software" or "On via On/Off Controller" states. 0b111 = same as 0b110	SYSRST=1	R/W

9.4 Register Descriptions: SIMO Buck Boost

9.4.1 CNFG_SBB_TOP

Register Name	CNFG_SBB_TOP
I2C Slave Address	function of ADDR OTP bit
Register Address	0x28
Reset Value (HEX)	ОТР
Reset Value (BIN)	Obxxxxxxx
Reset Condition	SYSRST=1
Access Type	R/W
Register Type	Configuration

Bit	Default	Bit Name	Description	Reset	Access Type
7	OTP	RESERVED	Reserved. Unutilized bit. Write to 0. Reads are don't care.	SYSRST=1	R/W
6	ОТР	MRT_OTP	$\label{eq:massess} \begin{array}{l} \mbox{Manual Reset Time Configuration} \\ 0 = the manual reset time (t_{MRST}) is typically 16s \\ 1 = The manual reset time (t_{MRST}) is typically 8s \\ \mbox{Note that the default value of this bit controls the manual reset time. This bit can be written to its alternate value but does not change the manual reset time configuration. When writing to this register, it is recommended to leave this bit in its default configuration. \end{array}$	SYSRST=1	R/W
5	ОТР	SBIA_LPM_DEF	Default voltage of the SBIA_LPM bit 0 = SBIA_LPM defaults to 0 which gives the normal power mode 1 = SBIA_LPM defaults to 1 which gives the low power mode Note that the default value of this bit controls the default value of SBIA_LPM. This bit can be written to its alternate value but does not change the bias power mode. If software needs to change the bias power mode, it should program the SBIA_LPM bit directly. When writing to this register, it is recommended to leave this bit in its default configuration.	SYSRST=1	R/W
4	ОТР	DBNC_nEN_DEF	Default Value of the DBNC_nEN bit 0 = DBNC_nEN defaults to 0 which gives a 100us nEN debounce time 1 = DBNC_nEN defaults to 1 which gives a 30ms nEN debounce time Note that the default value of this bit controls the default value of DBNC_nEN. This bit can be written to its alternate value but does not change the nEN debounce time. If software needs to change the DBNC_nEN debounce time, it should program the DBNC_nEN bit directly. When writing to this register, it is recommended to leave this bit in its default configuration.	SYSRST=1	R/W
3	OTP	RESERVED	Reserved. These bits are reserved. Write to 0x00.	SYSRST=1	R/W
2	OTP	RESERVED	heserveu. Hiese bits die reserveu. Write to 0x00.	SYSRST=1	R/W

1	ОТР	DDV (200[1-0]	SYSRST=1	R/W	
0	ОТР	DRV_SBB[1:0]	DRV_SBB[1:0] EMI in non-ideal setting (i.e. contained layout, antenna adjacent to device etc.). This setting is intended to be set once by the initialization code within a system. 0b00=fastest transition time 0b01=a little slower than 0b00 0b10=a little slower than 0b01 0b11=a little slower than 0b10	SYSRST=1	R/W

9.4.2 CNFG_SBB0_A

Register Name	CNFG_SBB0_A
I2C Slave Address	function of ADDR OTP bit
Register Address	0x29
Reset Value (HEX)	ОТР
Reset Value (BIN)	Obxxxxxxx
Reset Condition	SYSRST=1
Access Type	R/W
Register Type	Configuration

Bit	Default	Bit Name	Description	Reset	Access Type
7	OTP	IP_SBB0[1:0]	SIMO Buck-Boost Channel 1 Peak Current Limit 0b00=1.000A 0b01=0.866A	SYSRST=1	R/W
6	OTP		0b10=0.707A 0b11=0.500A	SYSRST=1	R/W
5	OTP		SIMO Buck-Boost Channel 0 Target Output Voltage This 6-bit configuration is a linear transfer function that starts at 0.8V, ends at 2.375V, with 25mV increments. See the "TV_SBB0 Code Table" section in this document for a complete table of values.	SYSRST=1	R/W
4	OTP			SYSRST=1	R/W
3	OTP			SYSRST=1	R/W
2	OTP	TV_SBB0[5:0]		SYSRST=1	R/W
1	OTP			SYSRST=1	R/W
0	OTP			SYSRST=1	R/W

9.4.3 TV_SBB0 Code Table

0x00=0b000000=0.800V	0x10=0b010000=1.200V	0x20=0b100000=1.600V	0x30=0b110000=2.000V
0x01=0b000001=0.825V	0x11=0b010001=1.225V	0x21=0b100001=1.625V	0x31=0b110001=2.025V
0x02=0b000010=0.850V	0x12=0b010010=1.250V	0x22=0b100010=1.650V	0x32=0b110010=2.050V
0x03=0b000011=0.875V	0x13=0b010011=1.275V	0x23=0b100011=1.675V	0x33=0b110011=2.075V
0x04=0b000100=0.900V	0x14=0b010100=1.300V	0x24=0b100100=1.700V	0x34=0b110100=2.100V
0x05=0b000101=0.925V	0x15=0b010101=1.325V	0x25=0b100101=1.725V	0x35=0b110101=2.125V
0x06=0b000110=0.950V	0x16=0b010110=1.350V	0x26=0b100110=1.750V	0x36=0b110110=2.150V
0x07=0b000111=0.975V	0x17=0b010111=1.375V	0x27=0b100111=1.775V	0x37=0b110111=2.175V
0x08=0b001000=1.000V	0x18=0b011000=1.400V	0x28=0b101000=1.800V	0x38=0b111000=2.200V
0x09=0b001001=1.025V	0x19=0b011001=1.425V	0x29=0b101001=1.825V	0x39=0b111001=2.225V
0x0A=0b001010=1.050V	0x1A=0b011010=1.450V	0x2A=0b101010=1.850V	0x3A=0b111010=2.250V
0x0B=0b001011=1.075V	0x1B=0b011011=1.475V	0x2B=0b101011=1.875V	0x3B=0b111011=2.275V
0x0C=0b001100=1.100V	0x1C=0b011100=1.500V	0x2C=0b101100=1.900V	0x3C=0b111100=2.300V
0x0D=0b001101=1.125V	0x1D=0b011101=1.525V	0x2D=0b101101=1.925V	0x3D=0b111101=2.325V
0x0E=0b001110=1.150V	0x1E=0b011110=1.550V	0x2E=0b101110=1.950V	0x3E=0b111110=2.350V
0x0F=0b001111=1.175V	0x1F=0b011111=1.575V	0x2F=0b101111=1.975V	0x3F=0b111111=2.375V

9.4.4 CNFG_SBB0_B

Register Name	CNFG_SBB0_B
I2C Slave Address	function of ADDR OTP bit
Register Address	0x2A
Reset Value (HEX)	ОТР
Reset Value (BIN)	0b0000xxxx
Reset Condition	SYSRST=1
Access Type	R/W
Register Type	Configuration

Bit	Default	Bit Name	Description	Reset	Access Type
7	0	BLANK	Blank. There is no bit at this location. Write to 0. Reads are don't care.	SYSRST=1	R/W
6	0	BLANK	Blank. There is no bit at this location. Write to 0. Reads are don't care.	SYSRST=1	R/W
5	0	BLANK	Blank. There is no bit at this location. Write to 0. Reads are don't care.	SYSRST=1	R/W
4	0	BLANK	Blank. There is no bit at this location. Write to 0. Reads are don't care.	SYSRST=1	R/W
3	ОТР	ADE_SBB0	SIMO Buck-Boost Channel 0 Active-Discharge Enable 0=The active discharge function is disabled. When SBB0 is disabled, it's discharge rate is a function of the output capacitance and the external load. 1=The active discharge function is enabled. When SBB0 is disabled, an internal resistor (R_{AD_SBB0}) is activated from SBB0 to PGND to help the output voltage discharge. The output voltage discharge rate is a function of the output capacitance, the external loading, and the internal R_{AD_SBB0} load.	SYSRST=1	R/W
2	ΟΤΡ		Enable Control for SIMO Buck-Boost Channel 0. 0b000 = SBB0 powers-up and powers-down in FPS slot 0 0b001 = SBB0 powers-up and powers-down in FPS slot 1 0b010 = SBB0 powers-up and powers-down in FPS slot 2 0b011 = SBB0 powers-up and powers-down in FPS slot 3	SYSRST=1	R/W
1	ОТР	EN_SBB0[2:0]	0b100 = SBB0 is off irrespective of FPS 0b101 = same as 0b100 0b110 = SBB0 is on irrespective of FPS whenever the on/off controller is in its "On via Software" or "On via On/Off Controller" states. 0b111 = same as 0b110	SYSRST=1	R/W
0	ОТР		Prior to enabling the SIMO, program the bias circuits to normal power mode (SBIA_LPM=0). After the SIMO is enabled, the bias circuits may be programmed back to low power mode (SBIA_LPM=1) to decrease quiescent current.	SYSRST=1	R/W

9.4.5 CNFG_SBB1_A

Register Name	CNFG_SBB1_A
I2C Slave Address	function of ADDR OTP bit
Register Address	0x2B
Reset Value (HEX)	OTP
Reset Value (BIN)	Obxxxxxxx
Reset Condition	SYSRST=1
Access Type	R/W
Register Type	Configuration

Bit	Default	Bit Name	Description	Reset	Access Type
7	ОТР	IP_SBB1[1:0]	SIMO Buck-Boost Channel 1 Peak Current Limit 0b00=1.000A 0b01=0.866A	SYSRST=1	R/W
6	OTP	IF_3DD1[1.0]	0b10=0.707A 0b11=0.500A	SYSRST=1	R/W
5	OTP		SIMO Buck-Boost Channel 1 Target Output Voltage This 6-bit configuration adjusts the MAX77650 from 0.8V to 1.5875V in 12.5mV increments with B0=LSB and B5=MSB. The MAX77651 adjustment range is from 2.4V to 5.25V in 50mV increments <u>but the LSB and MSB locations are</u> <u>not standard</u> . See the "TV_SBB1 Code Table" section in this document for a complete table of values.	SYSRST=1	R/W
4	OTP			SYSRST=1	R/W
3	OTP			SYSRST=1	R/W
2	OTP	TV_SBB1[5:0]		SYSRST=1	R/W
1	OTP			SYSRST=1	R/W
0	OTP			SYSRST=1	R/W

9.4.6 MAX77650 TV_SBB1 Code Table

0x10=0b010000=1.0000V 0x20=0b100000=1.2000V	/ 0x30=0b110000=1.4000V
0x11=0b010001=1.0125V 0x21=0b100001=1.2125V	/ 0x31=0b110001=1.4125V
0x12=0b010010=1.0250V 0x22=0b100010=1.2250V	/ 0x32=0b110010=1.4250V
0x13=0b010011=1.0375V 0x23=0b100011=1.2375V	/ 0x33=0b110011=1.4375V
0x14=0b010100=1.0500V 0x24=0b100100=1.2500V	/ 0x34=0b110100=1.4500V
0x15=0b010101=1.0625V 0x25=0b100101=1.2625V	/ 0x35=0b110101=1.4625V
0x16=0b010110=1.0750V 0x26=0b100110=1.2750V	/ 0x36=0b110110=1.4750V
0x17=0b010111=1.0875V 0x27=0b100111=1.2875V	/ 0x37=0b110111=1.4875V
0x18=0b011000=1.1000V 0x28=0b101000=1.3000V	/ 0x38=0b111000=1.5000V
0x19=0b011001=1.1125V 0x29=0b101001=1.3125V	/ 0x39=0b111001=1.5125V
0x1A=0b011010=1.1250V 0x2A=0b101010=1.3250V	/ 0x3A=0b111010=1.5250V
0x1B=0b011011=1.1375V 0x2B=0b101011=1.3375V	/ 0x3B=0b111011=1.5375V
0x1C=0b011100=1.1500V 0x2C=0b101100=1.3500V	/ 0x3C=0b111100=1.5500V
0x1D=0b011101=1.1625V 0x2D=0b101101=1.3625V	V 0x3D=0b111101=1.5625V
0x1E=0b011110=1.1750V 0x2E=0b101110=1.3750V	/ 0x3E=0b111110=1.5750V
0x1F=0b011111=1.1875V 0x2F=0b101111=1.3875V	/ 0x3F=0b111111=1.5875V
NAR OFFICIENT ALCON NAR OFFICIENT ALCON 0x18=0b011000=1.1000V 0x28=0b101000=1.3000V 0x19=0b011001=1.1125V 0x29=0b101001=1.3125V 0x1A=0b011010=1.1250V 0x2A=0b101010=1.3250V 0x1B=0b011011=1.1375V 0x2B=0b101011=1.3375V 0x1C=0b011100=1.1500V 0x2C=0b101100=1.3500V 0x1D=0b011101=1.1625V 0x2D=0b101101=1.3625V 0x1E=0b011110=1.1750V 0x2E=0b101110=1.3750V	/ 0x38=0b111000=1.5 / 0x39=0b111001=1.5 / 0x3A=0b111010=1.5 / 0x3B=0b111011=1.5 / 0x3C=0b111100=1.5 / 0x3D=0b111101=1.5 / 0x3E=0b111101=1.5

9.4.7 MAX77651 TV_SBB1 Code Table

B[5:2] B[1:0]	0b0000	0b0001	0b0010	0b0011	0b0100	0b0101	0b0110	0b0111	0b1000	0b1001	0b1010	0b1011	0b1100	0b1101	0b1110	0b1111
0b00	2.40	2.45	2.50	2.55	2.60	2.65	2.70	2.75	2.80	2.85	2.90	2.95	3.00	3.05	3.10	3.15
0b01	3.20	3.25	3.30	3.35	3.40	3.45	3.50	3.55	3.60	3.65	3.70	3.75	3.80	3.85	3.90	3.95
0b10	4.00	4.05	4.10	4.15	4.20	4.25	4.30	4.35	4.40	4.45	4.50	4.55	4.60	4.65	4.70	4.75
0b11	4.80	4.85	4.90	4.95	5.00	5.05	5.10	5.15	5.20	5.25	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD

The above transfer function is non-linear. See Figure 1 and Figure 2 for code examples for managing the above transfer function.

def max77651_sbb1_code_to_voltage(self, code):	def max77651_sbb1_voltage_to_code(self, voltage):
lsb = 0.05	lsb = 0.05
base_0 = 2.40	base_0 = 2.40
base_1 = 3.20	base_1 = 3.20
base_2 = 4.00	base_2 = 4.00
base_3 = 4.80	base_3 = 4.80
code_1_0 = code & 0b11 # extract 2 lsb	if voltage >= base_3:
	TV_SBB1_1_0 = 0b11
if code_1_0 == 0b00:	<pre>TV_SBB1_5_2 = int(round((voltage-base_3)/lsb))</pre>
voltage = base_0	elif voltage >= base_2:
elif code_1_0 == 0b01:	TV_SBB1_1_0 = 0b10
voltage = base_1	<pre>TV_SBB1_5_2 = int(round((voltage-base_2)/lsb))</pre>
elif code_1_0 == 0b10:	elif voltage >= base_1:
voltage = base_2	TV_SBB1_1_0 = 0b01
else:	<pre>TV_SBB1_5_2 = int(round((voltage-base_1)/lsb))</pre>
voltage = base_3	else:
code_5_2 = (code >> 2) & 0b1111 # extract bit 5 to 2	TV_SBB1_1_0 = 0b00
<pre>voltage = voltage + code_5_2 * lsb</pre>	<pre>TV_SBB1_5_2 = int(round((voltage-base_0)/lsb))</pre>
return voltage	code = (TV_SBB1_5_2 << 2) + TV_SBB1_1_0
Figure 1. python procedure to convert the MAX77651 SBB1 code to voltage	return code
	Figure 2. python procedure to convert the MAX77651 SBB1 voltage to code

9.4.8 CNFG_SBB1_B

Register Name	CNFG_SBB1_B
I2C Slave Address	function of ADDR OTP bit
Register Address	0x2C
Reset Value (HEX)	ОТР
Reset Value (BIN)	0b0000xxxx
Reset Condition	SYSRST=1
Access Type	R/W
Register Type	Configuration

Bit	Default	Bit Name	Description	Reset	Access Type
7	0	BLANK	Blank. There is no bit at this location. Write to 0. Reads are don't care.	SYSRST=1	R/W
6	0	BLANK	Blank. There is no bit at this location. Write to 0. Reads are don't care.	SYSRST=1	R/W
5	0	BLANK	Blank. There is no bit at this location. Write to 0. Reads are don't care.	SYSRST=1	R/W
4	0	BLANK	Blank. There is no bit at this location. Write to 0. Reads are don't care.	SYSRST=1	R/W
3	ОТР	ADE_SBB1	SIMO Buck-Boost Channel 1 Active-Discharge Enable O=The active discharge function is disabled. When SBB1 is disabled, it's discharge rate is a function of the output capacitance and the external load. 1=The active discharge function is enabled. When SBB1 is disabled, an internal resistor (R_{AD_SBB1}) is activated from SBB1 to PGND to help the output voltage discharge. The output voltage discharge rate is a function of the output capacitance, the external loading, and the internal R_{AD_SBB1} load.	SYSRST=1	R/W
2	ОТР		Enable Control for SIMO Buck-Boost Channel 1. 0b000 = SBB1 powers-up and powers-down in FPS slot 0 0b001 = SBB1 powers-up and powers-down in FPS slot 1 0b010 = SBB1 powers-up and powers-down in FPS slot 2 0b011 = SBB1 powers-up and powers-down in FPS slot 3	SYSRST=1	R/W
1	ОТР	EN_SBB1[2:0]	0b100 = SBB1 is off irrespective of FPS 0b101 = same as 0b100 0b110 = SBB1 is on irrespective of FPS whenever the on/off controller is in its "On via Software" or "On via On/Off Controller" states. 0b111 = same as 0b110	SYSRST=1	R/W
0	ОТР		Prior to enabling the SIMO, program the bias circuits to normal power mode (SBIA_LPM=0). After the SIMO is enabled, the bias circuits may be programmed back to low power mode (SBIA_LPM=1) to decrease quiescent current.	SYSRST=1	R/W

9.4.9 CNFG_SBB2_A

Register Name	CNFG_SBB2_A
I2C Slave Address	function of ADDR OTP bit
Register Address	0x2D
Reset Value (HEX)	ОТР
Reset Value (BIN)	Obxxxxxxx
Reset Condition	SYSRST=1
Access Type	R/W
Register Type	Configuration

Bit	Default	Bit Name	Description	Reset	Access Type
7	ОТР	- IP_SBB2[1:0]	SIMO Buck-Boost Channel 1 Peak Current Limit 0b00=1.000A 0b01=0.866A 0b10=0.707A 0b11=0.500A	SYSRST=1	R/W
6	OTP			SYSRST=1	R/W
5	OTP			SYSRST=1	R/W
4	OTP		SIMO Buck-Boost Channel 2 Target Output Voltage	SYSRST=1	R/W
3	OTP	TV_SBB2[5:0]	This 6-bit configuration is a linear transfer function that starts at 0.8V, ends at	SYSRST=1	R/W
2	OTP		V_SBB2[5:0] 3.95V, with 50mV increments for the MAX77650. For the MAX77651, the transfer function starts ad 2.4V, ends at 5.25V, with 50mV increments. See the "TV_SBB2 Code Table" section in this document for a complete table of values.	SYSRST=1	R/W
1	OTP			SYSRST=1	R/W
0	OTP			SYSRST=1	R/W

9.4.10 MAX77650 TV_SBB2 Code Table

0x00=0b000000=0.80V	0x10=0b010000=1.60V	0x20=0b100000=2.40V	0x30=0b110000=3.20V
0x01=0b000001=0.85V	0x11=0b010001=1.65V	0x21=0b100001=2.45V	0x31=0b110001=3.25V
0x02=0b000010=0.90V	0x12=0b010010=1.70V	0x22=0b100010=2.50V	0x32=0b110010=3.30V
0x03=0b000011=0.95V	0x13=0b010011=1.75V	0x23=0b100011=2.55V	0x33=0b110011=3.35V
0x04=0b000100=1.00V	0x14=0b010100=1.80V	0x24=0b100100=2.60V	0x34=0b110100=3.40V
0x05=0b000101=1.05V	0x15=0b010101=1.85V	0x25=0b100101=2.65V	0x35=0b110101=3.45V
0x06=0b000110=1.10V	0x16=0b010110=1.90V	0x26=0b100110=2.70V	0x36=0b110110=3.50V
0x07=0b000111=1.15V	0x17=0b010111=1.95V	0x27=0b100111=2.75V	0x37=0b110111=3.55V
0x08=0b001000=1.20V	0x18=0b011000=2.00V	0x28=0b101000=2.80V	0x38=0b111000=3.60V
0x09=0b001001=1.25V	0x19=0b011001=2.05V	0x29=0b101001=2.85V	0x39=0b111001=3.65V
0x0A=0b001010=1.30V	0x1A=0b011010=2.10V	0x2A=0b101010=2.90V	0x3A=0b111010=3.70V
0x0B=0b001011=1.35V	0x1B=0b011011=2.15V	0x2B=0b101011=2.95V	0x3B=0b111011=3.75V
0x0C=0b001100=1.40V	0x1C=0b011100=2.20V	0x2C=0b101100=3.00V	0x3C=0b111100=3.80V
0x0D=0b001101=1.45V	0x1D=0b011101=2.25V	0x2D=0b101101=3.05V	0x3D=0b111101=3.85V
0x0E=0b001110=1.50V	0x1E=0b011110=2.30V	0x2E=0b101110=3.10V	0x3E=0b111110=3.90V
0x0F=0b001111=1.55V	0x1F=0b011111=2.35V	0x2F=0b101111=3.15V	0x3F=0b111111=3.95V

9.4.11 MAX77651 TV_SBB2 Code Table

0x00=0b000000=2.40V	0x10=0b010000=3.20V	0x20=0b100000=4.00V	0x30=0b110000=4.80V
0x01=0b000001=2.45V	0x11=0b010001=3.25V	0x21=0b100001=4.05V	0x31=0b110001=4.85V
0x02=0b000010=2.50V	0x12=0b010010=3.30V	0x22=0b100010=4.10V	0x32=0b110010=4.90V
0x03=0b000011=2.55V	0x13=0b010011=3.35V	0x23=0b100011=4.15V	0x33=0b110011=4.95V
0x04=0b000100=2.60V	0x14=0b010100=3.40V	0x24=0b100100=4.20V	0x34=0b110100=5.00V
0x05=0b000101=2.65V	0x15=0b010101=3.45V	0x25=0b100101=4.25V	0x35=0b110101=5.05V
0x06=0b000110=2.70V	0x16=0b010110=3.50V	0x26=0b100110=4.30V	0x36=0b110110=5.10V
0x07=0b000111=2.75V	0x17=0b010111=3.55V	0x27=0b100111=4.35V	0x37=0b110111=5.15V
0x08=0b001000=2.80V	0x18=0b011000=3.60V	0x28=0b101000=4.40V	0x38=0b111000=5.20V
0x09=0b001001=2.85V	0x19=0b011001=3.65V	0x29=0b101001=4.45V	0x39=0b111001=5.25V
0x0A=0b001010=2.90V	0x1A=0b011010=3.70V	0x2A=0b101010=4.50V	0x3A=0b111010=RSVD
0x0B=0b001011=2.95V	0x1B=0b011011=3.75V	0x2B=0b101011=4.55V	0x3B=0b111011=RSVD
0x0C=0b001100=3.00V	0x1C=0b011100=3.80V	0x2C=0b101100=4.60V	0x3C=0b111100=RSVD
0x0D=0b001101=3.05V	0x1D=0b011101=3.85V	0x2D=0b101101=4.65V	0x3D=0b111101=RSVD
0x0E=0b001110=3.10V	0x1E=0b011110=3.90V	0x2E=0b101110=4.70V	0x3E=0b111110=RSVD
0x0F=0b001111=3.15V	0x1F=0b011111=3.95V	0x2F=0b101111=4.75V	0x3F=0b111111=RSVD

9.4.12 CNFG_SBB2_B

Register Name	CNFG_SBB2_B
I2C Slave Address	function of ADDR OTP bit
Register Address	0x2E
Reset Value (HEX)	ОТР
Reset Value (BIN)	0b0000xxxx
Reset Condition	SYSRST=1
Access Type	R/W
Register Type	Configuration

Bit	Default	Bit Name	Description	Reset	Access Type
7	0	BLANK	Blank. There is no bit at this location. Write to 0. Reads are don't care.	SYSRST=1	R/W
6	0	BLANK	Blank. There is no bit at this location. Write to 0. Reads are don't care.	SYSRST=1	R/W
5	0	BLANK	Blank. There is no bit at this location. Write to 0. Reads are don't care.	SYSRST=1	R/W
4	0	BLANK	Blank. There is no bit at this location. Write to 0. Reads are don't care.	SYSRST=1	R/W
3	ОТР	ADE_SBB2	SIMO Buck-Boost Channel 2 Active-Discharge Enable 0=The active discharge function is disabled. When SBB2 is disabled, it's discharge rate is a function of the output capacitance and the external load. 1=The active discharge function is enabled. When SBB2 is disabled, an internal resistor (R_{AD_SBB2}) is activated from SBB2 to PGND to help the output voltage discharge. The output voltage discharge rate is a function of the output capacitance, the external loading, and the internal R_{AD_SBB2} load.	SYSRST=1	R/W
2	ΟΤΡ		Enable Control for SIMO Buck-Boost Channel 2. 0b000 = SBB2 powers-up and powers-down in FPS slot 0 0b001 = SBB2 powers-up and powers-down in FPS slot 1 0b010 = SBB2 powers-up and powers-down in FPS slot 2 0b011 = SBB2 powers-up and powers-down in FPS slot 3	SYSRST=1	R/W
1	ОТР	EN_SBB2[2:0]	0b100 = SBB2 is off irrespective of FPS 0b101 = same as 0b100 0b110 = SBB2 is on irrespective of FPS whenever the on/off controller is in its "On via Software" or "On via On/Off Controller" states. 0b111 = same as 0b110	SYSRST=1	R/W
0	OTP		Prior to enabling the SIMO, program the bias circuits to normal power mode (SBIA_LPM=0). After the SIMO is enabled, the bias circuits may be programmed back to low power mode (SBIA_LPM=1) to decrease quiescent current.	SYSRST=1	R/W

9.5 Register Descriptions: Current Sinks

9.5.1 CNFG_LED0_A

Register Name	CNFG_LED0_A
I2C Slave Address	function of ADDR OTP bit
Register Address	0x40
Reset Value (HEX)	0x04
Reset Value (BIN)	0b0000100
Reset Condition	SYSRST=1
Access Type	R/W
Register Type	Configuration

Bit	Default	Bit Name	Description	Reset	Access Type
7	0		LED0 Full Scale Range: Note that for the LED to be enabled EN_LED_MSTR must be set and the on/off controller must be in either its "On vias Software" or "On vias On/Off Controller" state.	SYSRST=1	R/W
6	0	LED_FS0[1:0]	Ob01 = enabled Ob10= enabled Ob11 = enabled Ob00 = disabled with 3.2mA full- with 6.4mA full- with 12.8mA scale Range scale range full-scale range	SYSRST=1	R/W
5	0	INV_LED0	LED0 Invert. 0 = In-phase operation. When the current sink is enabled, it begins by sinking the specified current (BRT_LED0[4:0]) for the specified duty cycle (D_LED0[3:0]) and then it turns off until the beginning of the new period (P_LED0[3:0]). 1 = Inverted-phase operation. When the current sink is enabled, it is off for the specified duty cycle (D_LED0[3:0]) and then turns on until the beginning of the new period (P_LED0[3:0]).	SYSRST=1	R/W
4	0			SYSRST=1	R/W
3	0			SYSRST=1	R/W
2	1	BRT_LED0[4:0]	LED0 Brightness Control, programmable with 5-bit Resolution Full-Scale is controlled by LED_FS0[1:0]. See the BRT_LED tab for more information.	SYSRST=1	R/W
1	0]		SYSRST=1	R/W
0	0			SYSRST=1	R/W

9.5.2 CNFG_LED0_B

Register Name	CNFG_LED0_B
I2C Slave Address	function of ADDR OTP bit
Register Address	0x43
Reset Value (HEX)	0x0F
Reset Value (BIN)	0b00001111
Reset Condition	SYSRST=1
Access Type	R/W
Register Type	Configuration

Bit	Default	Bit Name		Description			Reset	Access Type
7	0		LED0 Period Setting	gs			SYSRST=1	R/W
6	0		0b0000 = 0.5s 0b0100 = 2.5s 0b1000 = 4.5s 0b1100 = 6.5s	SYSRST=1	R/W			
5	0	P_LED0[3:0]	0b0001 = 1.0s 0b0010 = 1.5s	0b0101 = 3.0s 0b0110 = 3.5s	0b1001 = 5.0s 0b1010 = 5.5s	0b1101 = 7s 0b1110 = 7.5s	SYSRST=1	R/W
4	0		0b0011 = 2.0s	0b0111 = 4.0s	0b1011 = 6.0s	0b1111 = 8s	SYSRST=1	R/W
3	1		LED0 On Duty-Cycl	e Settings			SYSRST=1	R/W
2	1		0b0000 = 6.25%	0b0100 = 31.25%	0b1000 = 56.25%	0b1100 = 81.25%	SYSRST=1	R/W
1	1	D_LED0[3:0]	0b0001 = 12.5% 0b0010 = 18.75%	0b0101 = 37.5% 0b0110 = 43.75%	0b1001 = 62.5% 0b1010 = 68.75%	0b1101 = 87.5% 0b1110 = 93.75%	SYSRST=1	R/W
0	1		0b0011 = 25%	0b0111 = 50%	0b1011 = 75%	0b1111 = 100%	SYSRST=1	R/W

9.5.3 CNFG_LED1_A

Register Name	CNFG_LED1_A
I2C Slave Address	function of ADDR OTP bit
Register Address	0x41
Reset Value (HEX)	0x04
Reset Value (BIN)	0b0000100
Reset Condition	SYSRST=1
Access Type	R/W
Register Type	Configuration

Bit	Default	Bit Name	Description	Reset	Access Type
7	0	LED_FS1[1:0]	LED1 Full Scale Range: Note that for the LED to be enabled EN_LED_MSTR must be set and the on/off controller must be in either its "On vias Software" or "On vias On/Off Controller" state.	SYSRST=1	R/W
6	0		Ob01 = enabled Ob10= enabled Ob11 = enabled Ob00 = disabled with 3.2mA full- with 6.4mA full- with 12.8mA scale Range scale range full-scale range	SYSRST=1	R/W
5	0	INV_LED1	LED1 Invert. 0 = In-phase operation. When the current sink is enabled, it begins by sinking the specified current (BRT_LED1[4:0]) for the specified duty cycle (D_LED1[3:0]) and then it turns off until the beginning of the new period (P_LED1[3:0]). 1 = Inverted-phase operation. When the current sink is enabled, it is off for the specified duty cycle (D_LED1[3:0]) and then turns on until the beginning of the new period (P_LED1[3:0]).	SYSRST=1	R/W
4	0			SYSRST=1	R/W
3	0			SYSRST=1	R/W
2	1	BRT_LED1[4:0]	LED1 Brightness Control, programmable with 5-bit Resolution Full-Scale is controlled by LED_FS1[1:0]. See the BRT_LED tab for more information.	SYSRST=1	R/W
1	0			SYSRST=1	R/W
0	0			SYSRST=1	R/W

9.5.4 CNFG_LED1_B

Register Name	CNFG_LED1_B
I2C Slave Address	function of ADDR OTP bit
Register Address	0x44
Reset Value (HEX)	0x0F
Reset Value (BIN)	0b00001111
Reset Condition	SYSRST=1
Access Type	R/W
Register Type	Configuration

Bit	Default	Bit Name		Description			Reset	Access Type
7	0		LED1 Period Setting	gs			SYSRST=1	R/W
6	0	P_LED1[3:0] 0b0000 = 0.5s 0b0001 = 1.0s 0b0010 = 1.5s	0b0000 = 0.5s	0b0100 = 2.5s	0s 0b1001 = 5.0s 0b1101 = 7s	0b1100 = 6.5s	SYSRST=1	R/W
5	0			0b0101 = 3.0s 0b0110 = 3.5s			SYSRST=1	R/W
4	0		0b0011 = 2.0s	0b0111 = 4.0s 0b1011 = 6.0s	Ob1111 = 8s SYSRST	SYSRST=1	R/W	
3	1		LED1 On Duty-Cycl	e Settings			SYSRST=1	R/W
2	1	D_LED1[3:0] 0b0001 = 0b0010 =	D_LED1[3:0] 0b0001 = 12.5% 0b0101 = 37.5% 0	0b1001 = 62.5% 0b1101 = 87.5%	0b1100 = 81.25%	SYSRST=1	R/W	
1	1				0b1101 = 87.5% 0b1110 = 93.75%	SYSRST=1	R/W	
0	1		0b0011 = 25%	0b0111 = 50%	0b1011 = 75%	0b1111 = 100%	SYSRST=1	R/W

9.5.5 CNFG_LED2_A

Register Name	CNFG_LED2_A
I2C Slave Address	function of ADDR OTP bit
Register Address	0x42
Reset Value (HEX)	0x04
Reset Value (BIN)	0b0000100
Reset Condition	SYSRST=1
Access Type	R/W
Register Type	Configuration

Bit	Default	Bit Name	Description	Reset	Access Type
7	0		LED2 Full-Scale Range: Note that for the LED to be enabled EN_LED_MSTR must be set and the on/off controller must be in either its "On vias Software" or "On vias On/Off Controller" state.	SYSRST=1	R/W
6	0	LED_FS2[1:0]	0b01 = enabled0b10= enabled0b11 = enabled0b00 = disabledwith 3.2mA full-with 6.4mA full-with 12.8mAscale Rangescale rangefull-scale range	SYSRST=1	R/W
5	0	INV_LED2	LED2 Invert. 0 = In-phase operation. When the current sink is enabled, it begins by sinking the specified current (BRT_LED2[4:0]) for the specified duty cycle (D_LED2[3:0]) and then it turns off until the beginning of the new period (P_LED2[3:0]). 1 = Inverted-phase operation. When the current sink is enabled, it is off for the specified duty cycle (D_LED2[3:0]) and then turns on until the beginning of the new period (P_LED2[3:0]).	SYSRST=1	R/W
4	0			SYSRST=1	R/W
3	0			SYSRST=1	R/W
2	1	BRT_LED2[4:0]	LED2 Brightness Control, programmable with 5-bit Resolution Full-Scale is controlled by LED_FS2[1:0]. See the BRT_LED tab for more information.	SYSRST=1	R/W
1	0]		SYSRST=1	R/W
0	0			SYSRST=1	R/W

9.5.6 CNFG_LED2_B

Register Name	CNFG_LED2_B
I2C Slave Address	function of ADDR OTP bit
Register Address	0x45
Reset Value (HEX)	0x0F
Reset Value (BIN)	0b00001111
Reset Condition	SYSRST=1
Access Type	R/W
Register Type	Configuration

Bit	Default	Bit Name		Description			Reset	Access Type
7	0		LED2 Period Settings				SYSRST=1	R/W
6	0	D 1 CD 2[2:0]	0b0000 = 0.5s	0b0100 = 2.5s	.5s 0b1000 = 4.5s 0b1100 = 6.5s	0b1100 = 6.5s	SYSRST=1	R/W
5	0	P_LED2[3:0] 000000 = 0.35 0b0001 = 1.05 0b0010 = 1.55 0b0011 = 2.05		0b0101 = 3.0s 0b0110 = 3.5s	0b1001 = 5.0s 0b1010 = 5.5s	0b1101 = 7s 0b1110 = 7.5s	SYSRST=1	R/W
4	0		0b0111 = 4.0s 0b1011 = 6.0s	0b1111 = 8s	SYSRST=1	R/W		
3	1	D_LED2[3:0]	LED2 On Duty-Cycl	e Settings			SYSRST=1	R/W
2	1		0b0000 = 6.25%	0b0100 = 31.25%	0b1000 = 56.25%	0b1100 = 81.25%	SYSRST=1	R/W
1	1		= 0b0001 = 12.5% 0b0101 = 37.5% 0b1001 = 62.5% 0	0b1101 = 87.5% 0b1110 = 93.75%	SYSRST=1	R/W		
0	1		0b0011 = 25%	0b0111 = 50%	0b1011 = 75%	0b1111 = 100%	SYSRST=1	R/W

9.5.7 CNFG_LED_TOP

Register Name	CNFG_LED_TOP
I2C Slave Address	function of ADDR OTP bit
Register Address	0x46
Reset Value (HEX)	0x0D
Reset Value (BIN)	0b00001101
Reset Condition	SYSRST=1
Access Type	Mixed
Register Type	Configuration

Bit	Default	Bit Name	Description	Reset	Access Type
7	0	RESERVED	Reserved. Unutilized bit. Write to 0. Reads are don't care.	SYSRST=1	R/W
6	0	RESERVED	Reserved. Unutilized bit. Write to 0. Reads are don't care.	SYSRST=1	R/W
5	0	RESERVED	Reserved. Unutilized bit. Write to 0. Reads are don't care.	SYSRST=1	R/W
4	0	RESERVED	Reserved. Unutilized bit. Write to 0. Reads are don't care.	SYSRST=1	R/W
3	1	RESERVED	Reserved. Unutilized bit. Write to 0. Reads are don't care.	SYSRST=1	R/W
2	1	RESERVED	Reserved. Unutilized bit. Write to 0. Reads are don't care.	SYSRST=1	R/W
1	0	CLK_64_S	64Hz Clock Status. CLK_64_S is internally driven by the same clock that drives the current sink PWM logic. CLK_64_S is provided to allow software to align its timing with that of the internal PWM logic when setting up custom LED blink patterns. CLK_64_S has a 10% duty cycle. 0= The 64Hz root clock is logic low. 1 = The 64Hz root clock is logic high.	SYSRST=1	R
0	1	EN_LED_MSTR	Master LED Enable Bit 0= The current sinks are disabled. 1 = The current sinks are enabled if their individual enable it is enabled (EN_LEDx) and the on/off controller is in its "On via Software" or "On via On/Off Controller" states.	SYSRST=1	R/W

0x10=0b10000=1.7mA
0x11=0b10001=1.8mA
0x12=0b10010=1.9mA
0x13=0b10011=2.0mA
0x14=0b10100=2.1mA
0x15=0b10101=2.2mA
0x16=0b10110=2.3mA
0x17=0b10111=2.4mA
0x18=0b11000=2.5mA
0x19=0b11001=2.6mA
0x1A=0b11010=2.7mA
0x1B=0b11011=2.8mA
0x1C=0b11100=2.9mA
0x1D=0b11101=3.0mA
0x1E=0b11110=3.1mA
0x1F=0b11111=3.2mA

9.5.9 BRT_LEDx Code table when LED_FSx = 0b10

0x00=0b00000=0.2mA	0x10=0b10000=3.4mA
0x01=0b00001=0.4mA	0x11=0b10001=3.6mA
0x02=0b00010=0.6mA	0x12=0b10010=3.8mA
0x03=0b00011=0.8mA	0x13=0b10011=4.0mA
0x04=0b00100=1.0mA	0x14=0b10100=4.2mA
0x05=0b00101=1.2mA	0x15=0b10101=4.4mA
0x06=0b00110=1.4mA	0x16=0b10110=4.6mA
0x07=0b00111=1.6mA	0x17=0b10111=4.8mA
0x08=0b01000=1.8mA	0x18=0b11000=5.0mA
0x09=0b01001=2.0mA	0x19=0b11001=5.2mA
0x0A=0b01010=2.2mA	0x1A=0b11010=5.4mA
0x0B=0b01011=2.4mA	0x1B=0b11011=5.6mA
0x0C=0b01100=2.6mA	0x1C=0b11100=5.8mA
0x0D=0b01101=2.8mA	0x1D=0b11101=6.0mA
0x0E=0b01110=3.0mA	0x1E=0b11110=6.2mA
0x0F=0b01111=3.2mA	0x1F=0b11111=6.4mA

0x10=0b10000=6.8mA
0x11=0b10001=7.2mA
0x12=0b10010=7.6mA
0x13=0b10011=8.0mA
0x14=0b10100=8.4mA
0x15=0b10101=8.8mA
0x16=0b10110=9.2mA
0x17=0b10111=9.6mA
0x18=0b11000=10.0mA
0x19=0b11001=10.4mA
0x1A=0b11010=10.8mA
0x1B=0b11011=11.2mA
0x1C=0b11100=11.6mA
0x1D=0b11101=12.0mA
0x1E=0b11110=12.4mA
0x1F=0b11111=12.8mA

9.5.10 BRT_LEDx Code table when LED_FSx = 0b11

10 Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	5/17	Initial release	—
1	6/18	Updated Table 2 and CNFG_CGH_A Register Table	4, 20
2	7/18	Updated Table 2 and STAT_CHG_A Register Table	3, 18
3	1/19	Updated Table 2, section 5 Software Management of the Charger, section 9 Register Description, CNFG_GLBL Table, STAT_GLBL Table, CID Table, CNFG_CHG_B Table, CNFG_LDO_A Table, CNFG_LDO_B Table, CNFG_SBB_TOP Table, CNFG_SBB0_A Table, CNFG_SBB0_B Table, CNFG_SBB1_A Table, CNFG_SBB1_B Table, CNFG_SBB2_A Table, CNFG_SBB2_B Table, and CNFG_LED2_B Table	3, 6, 9, 13, 16, 22, 32, 34–39, 42–43, 45, 51

©2019 by Maxim Integrated Products, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. MAXIM INTEGRATED PRODUCTS, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. MAXIM ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this document has been

verified according to the general principles of electrical and mechanical engineering or registered trademarks of Maxim Integrated Products, Inc. All other product or service names are the property of their respective owners.